
1	

1	

CS1110, 20 Oct. 2009, Lec 14 ���
Elementary graphics; intro to loops and for-loops	

Reading: Sec. 2.3.8 and chapter 7 on loops. ���
The lectures on the ProgramLive CD can be a big help.	

A5 is out: graphics, loops, recursion. Due Sat. Oct 30th. 	

Talks on Thursday Oct 21:	

Adaptive Drama Management: 	

Bringing Machine Learning to Interactive Entertainment	

4:15pm, Upson B17 	

(computer science, game design, social psychology)	

Computational Advertising, 7pm, Phillips 203	

 (intersection of computer science and econ)	

Prelim 2: Tu Nov 9th, 7:30-9pm. 	

Conflicts? Submit CMS "assignment" "P2 conflicts" by Oct 26th. 	

Have your iClicker out.	

2	

2	

Graphical User Interfaces (GUIs): graphics.	

A JFrame, with a "panel"
on which you can draw	

A “panel” in which
you can draw	

On the panel, each pair (x,y)
indicates a “pixel” or picture element. 	

For Assignment 5, you need to
understand that:	

x-coordinates increase rightward���
 y-coordinates increase downward.	

(0,0) (1,0) (2,0) …	

(0,1) (1,1) (2,1) …	

(0,2) (1,2) (2,2) …	

…	

3	

3	

In A5, write methods
to draw shapes and

spirals, and draw
things using recursive

procedures. 	

Assignment A5: drawing with a Turtle	

We'll use ACM's GraphicsProgram, which supplies a "GTurtle":	

•  point (x, y): where the “Turtle” is	

•  angle: the direction the Turtle faces 	

•  a pen color	

•  whether the pen is up or down	

Class GTurtle has methods for moving a
GTurtle around, drawing as it goes.	

Draw equilateral triangle with side
lengths 30; turtle t ending up at starting
point and facing the same direction:	

 t.forward(30); t.left(120);	

 t.forward(30); t.left(120);	

 t.forward(30); t.left(120);	

0 degrees	

90 degrees	

180 degrees	

270 degrees	

4	

From recursion to loops: doing things repeatedly	

We write programs to make computers do things.	

We often want to make them do things multiple times.	

1.  Perform n trials or get n samples.	

•  A5: draw a triangle six times to make a hexagon	

•  Run a protein-folding simulation for 106 time steps	

2.  Process each item in a given String, Vector, or other “list”	

•  Compute aggregate statistics for a dataset, such as the

mean, median, standard deviation, etc.	

•  Send everyone in a certain (Facebook) group an

individual appointment time	

3.  Do something an unknown number of times	

•  ALVINN, the van that learned to drive itself,

continuously watched human driving behavior and
adjusted its model accordingly	

5	

From recursion to loops: doing things repeatedly	

We’ve talked about recursion.	

Alternatives: 	

 while-loops 	

for-loops (special syntax for cases involving a "counter")	

	

<set things up>;	

 while (stuff still to do) {	

	

 	

<process current item>; 	

	

 	

<prepare for next item>;	

 }	

 for (<set counter up>; <still stuff to do>; <update counter>) {	

	

 	

<process current item>; 	

	

 	

<prepare for next item>;	

 }	

 6	

The for loop, for processing a range of integers	

x= 0;	

// add the squares of ints	

// in range 2..200 to x	

x= x + 2*2;	

x= x + 3*3;	

…	

x= x + 200*200;	

for each number i in
the range 2..200,
add i*i to x. 	

The for-loop:	

for (int i= 2; i <= 200; i= i +1) {	

 x= x + i*i;	

}	

loop counter: i	

initialization: int i= 2;	

loop condition: i <= 200;	

increment: i= i + 1	

repetend or body: { x= x + i*i; }	

2	

7	

Execution of the for-loop	

The for-loop:	

for (int i= 2; i <= 200; i= i +1) {	

 x= x + i*i;	

}	

loop counter: i	

initialization: int i= 2;	

loop condition: i <= 200;	

increment: i= i + 1	

repetend or body: { x= x + i; }	

To execute the for-loop.	

1.  Execute initialization.	

2.  If loop condition false,

exit the loop (skip 3&4).	

3.  Execute repetend.	

4.  Execute increment,

repeat from step 2.	

Called a “flow chart”	

i= 2;	

i <= 200	

i= i +1;	

true	

false	

x= x + i*i;	

8	

Application: URL analysis for search engines	

Problem: how does a search engine (e.g., Google) decide
which webpages are the most important to present?	

This requires counting the number of slashes in a URL
(given as a String).	

You know a recursive solution; next slide: loop solution.	

(Small) part of the answer: use URL cues	

•  “Deep” URLs are usually less important, e.g.,
www.fake.com/this/that/other/minor/tiny/detail.htm	

9	

The pattern for processing range of integers: 	

range a..b-1 range c..d	

for (int i= a; i < b; i= i + 1) {	

	

Process integer i;	

}	

// store in count # of ‘/’s in String s	

// inv: count is # of ‘/’s in s[0..i-1] 	

count=0;	

for (int i= 0; i < s.length(); i= i +1) {	

 if (s.charAt(i) == '/') ���
	

count= count+1;	

}	

// count is # of ‘/’s in s[0..s.length()-1]	

for (int i= c; i <= d; i= i + 1) {	

	

Process integer i;	

}	

// Store in double var. v the sum���
// 1/1 + 1/2 + …+ 1/n	

v= 0; // call this 1/0 for today	

// inv: v is 1/1 + 1/2 + …+ 1/(i-1) 	

for (int i= 1; i <= n; i= i +1) {	

	

v= v + 1.0 / i;	

}	

// v= 1/1 + 1/2 + …+ 1/n	

10	

Note on range notation 	

(later, will make reasoning about loops easier) 	

2..5 contains 2, 3, 4, 5. 	

It contains 5+1 – 2 = 4 values	

The number of values in m..n is n+1 – m: "follower minus first"	

In the notation m..n, we require always, without saying it, that	

 m <= n + 1 (so, “2..1” is OK but not “2..0”)	

If m = n + 1, the range has 0 values.	

2..4 contains 2, 3, 4. 	

It contains 4+1 – 2 = 4 values 	

2..3 contains 2, 3. 	

 	

It contains 3+1 – 2 = 2 values	

2..2 contains 2. 	

 	

It contains 2+1 – 2 = 1 values	

2..1 contains .
	

 	

	

It contains 1+1 – 2 = 0 values	

11	

Application: Some Personalized Email (SPEM)	

Problem: how can we get people to read our mass email
announcements?	

This requires storing individualized information, iterating
over the items we stored, and figuring out msg/mail output.	

One answer: make it personal.	

•  Only one recipient	

•  Customized message (“Hi Lisa, great seeing you at the talk
yesterday. Don’t forget the meeting tomorrow”; “Hail
Batman. What this course needs is a better class of
Criminal. Don’t forget the meeting tomorrow”)	

• We don’t want to add duplicate recipients to the list (people
notice and hate getting redundant emails).	

12	

 Some Personalized Email (SPEM): design decisions	

How shall we represent a group of recipients
(e.g., TAs vs. students)?	

The usual design problem: how should we lay everything out?	

We want the functionality of Vectors (so we can add recipients),	

… but we want to modify that functionality to be suitable for our 	

purposes (no adds of duplicate recipients, ability to mail each 	

recipient).	

•  new class MailRecip with appropriate equals method [remember
last lecture?], personalization and mailing methods	

•  new class MailGroup extending Vector, using MailRecip's equals
method to prevent addition of duplicates	

3	

13	

 Some Personalized Email (SPEM): design decisions	

Where should we put new method "add" (which silently does
nothing when someone attempts to add a duplicate)?	

 … We should ensure there is no way to add duplicates to the
list.	

A.  static method in MailRecip MailRecip.add(lisa, staff)	

B.  object method in MailRecip list.add(staff)	

C.  static method in MailGroup 	

MailGroup.add(lisa, staff) 	

	

D.  object method in MailGroup 	

staff.add(lisa)	

E.  no new method needed; just use Vector's staff.add(lisa)	

