
1	

1	

CS1110, 20 Oct. 2009, Lec 14 ���
Elementary graphics; intro to loops and for-loops	

Reading: Sec. 2.3.8 and chapter 7 on loops. ���
The lectures on the ProgramLive CD can be a big help.	

A5 is out: graphics, loops, recursion. Due Sat. Oct 30th. 	

Talks on Thursday Oct 21:	

Adaptive Drama Management: 	

Bringing Machine Learning to Interactive Entertainment	

4:15pm, Upson B17 	

(computer science, game design, social psychology)	

Computational Advertising, 7pm, Phillips 203	

 (intersection of computer science and econ)	

Prelim 2: Tu Nov 9th, 7:30-9pm. 	

Conflicts? Submit CMS "assignment" "P2 conflicts" by Oct 26th. 	

2	

2	

Graphical User Interfaces (GUIs): graphics.	

A JFrame, with a "panel"
on which you can draw	

A “panel” in which
you can draw	

On the panel, each pair (x,y)
indicates a “pixel” or picture element. 	

For Assignment 5, you need to
understand that:	

x-coordinates increase rightward���
 y-coordinates increase downward.	

(0,0) (1,0) (2,0) …	

(0,1) (1,1) (2,1) …	

(0,2) (1,2) (2,2) …	

…	

3	

3	

In A5, write methods
to draw shapes and

spirals, and draw
things using recursive

procedures. 	

Assignment A5: drawing with a Turtle	

We'll use ACM's GraphicsProgram, which supplies a "GTurtle":	

•  point (x, y): where the “Turtle” is	

•  angle: the direction the Turtle faces 	

•  a pen color	

•  whether the pen is up or down	

Class GTurtle has methods for moving a
GTurtle around, drawing as it goes.	

Draw equilateral triangle with side
lengths 30; turtle t ending up at starting
point and facing the same direction:	

 t.forward(30); t.left(120);	

 t.forward(30); t.left(120);	

 t.forward(30); t.left(120);	

0 degrees	

90 degrees	

180 degrees	

270 degrees	

4	

From recursion to loops: doing things repeatedly	

We write programs to make computers do things.	

We often want to make them do things multiple times.	

1.  Perform n trials or get n samples.	

•  A5: draw a triangle six times to make a hexagon	

•  Run a protein-folding simulation for 106 time steps	

2.  Process each item in a given String, Vector, or other “list”	

•  Compute aggregate statistics for a dataset, such as the

mean, median, standard deviation, etc.	

•  Send everyone in a certain (Facebook) group an

individual appointment time	

3.  Do something an unknown number of times	

•  ALVINN, the van that learned to drive itself,

continuously watched human driving behavior and
adjusted its model accordingly	

5	

From recursion to loops: doing things repeatedly	

We’ve talked about recursion.	

Alternatives: 	

	

while-loops 	

	

for-loops (special syntax for common special cases)	

	

<set things up>;	

 while (stuff still to do) {	

	

 	

<process current item>; 	

	

 	

<prepare for next item>;	

 }	

 for (<set counter up>; <still stuff to do>; <update counter>) {	

	

 	

<process current item>; 	

	

 	

<prepare for next item>;	

 }	

 6	

The for loop, for processing a range of integers	

x= 0;	

// add the squares of ints	

// in range 2..200 to x	

x= x + 2*2;	

x= x + 3*3;	

…	

x= x + 200*200;	

for each number i in
the range 2..200,
add i*i to x. 	

The for-loop:	

for (int i= 2; i <= 200; i= i +1) {	

 x= x + i*i;	

}	

loop counter: i	

initialization: int i= 2;	

loop condition: i <= 200;	

increment: i= i + 1	

repetend or body: { x= x + i*i; }	

2	

7	

Execution of the for-loop	

The for-loop:	

for (int i= 2; i <= 200; i= i +1) {	

 x= x + i*i;	

}	

loop counter: i	

initialization: int i= 2;	

loop condition: i <= 200;	

increment: i= i + 1	

repetend or body: { x= x + i; }	

To execute the for-loop.	

1.  Execute initialization.	

2.  If loop condition false,

terminate execution.	

3.  Execute repetend.	

4.  Execute increment,

repeat from step 2.	

Called a “flow chart”	

i= 2;	

i <= 200	

i= i +1;	

true	

false	

x= x + i*i;	

8	

Application: URL analysis for search engines	

Problem: how does a search engine (e.g., Google) decide
which webpages are the most important to present?	

This requires counting the number of slashes in a URL
(given as a String).	

You know a recursive solution; next slide: loop solution.	

(Small) part of the answer: use URL cues	

•  “Deep” URLs are usually less important, e.g.,
www.fake.com/this/that/other/minor/tiny/detail.htm	

9	

The pattern for processing range of integers: 	

range a..b-1 range c..d	

for (int i= a; i < b; i= i + 1) {	

	

Process integer i;	

}	

// store in count # of ‘/’s in String s	

// inv: count is # of ‘/’s in s[0..i-1] 	

count=0;	

for (int i= 0; i < s.length(); i= i +1) {	

 if (s.charAt(i) == ‘/’) ���
	

count= count+1;	

}	

// count is # of ‘/’s in s[0..s.length()-1]	

for (int i= c; i <= d; i= i + 1) {	

	

Process integer i;	

}	

// Store in double var. v the sum���
// 1/1 + 1/2 + …+ 1/n	

v= 0; // call this 1/0 for today	

// inv: v is 1/1 + 1/2 + …+ 1/(i-1) 	

for (int i= 1; i <= n; i= i +1) {	

	

v= v + 1.0 / i;	

}	

// v= 1/1 + 1/2 + …+ 1/n	

10	

Note on ranges 	

(later, will make reasoning about loops easier) 	

2..5 contains 2, 3, 4, 5. 	

It contains 5+1 – 2 = 4 values	

The number of values in m..n is n+1 – m: "follower minus first"	

In the notation m..n, we require always, without saying it, that	

 m <= n + 1 (so, “2..1” is OK but not “2..0”)	

If m = n + 1, the range has 0 values.	

2..4 contains 2, 3, 4. 	

It contains 4+1 – 2 = 4 values 	

2..3 contains 2, 3. 	

 	

It contains 3+1 – 2 = 2 values	

2..2 contains 2. 	

 	

It contains 2+1 – 2 = 1 values	

2..1 contains .
	

 	

	

It contains 1+1 – 2 = 0 values	

11	

Application: Some Personalized Email (SPEM)	

Problem: how can we get people to read our mass email
messages?	

This requires storing individualized information, iterating
over the items we stored, and figuring out msg/mail output.	

One answer: make it personal.	

•  Only one recipient	

•  Customized message (“Hi Lisa, great seeing you at the talk
yesterday. Don’t forget the meeting tomorrow”; “Hail
Batman. This course needs a better class of Criminal. Don’t
forget the meeting tomorrow”)	

• We don’t want to add duplicate recipients to the list (people
notice and hate getting redundant emails).	

12	

 Some Personalized Email (SPEM): design decisions	

How shall we represent a group of recipients
(e.g., TAs vs. students)?	

The usual design problem: how should we lay everything out?	

We want the functionality of Vectors (so we can add recipients),	

… but we want to modify that functionality to be suitable for our 	

purposes (no adds of duplicate recipients, ability to mail each 	

recipient).	

•  new class MailRecip with appropriate equals method [remember
last lecture?], personalization and mailing methods	

•  new class MailGroup extending Vector, using MailRecip's equals
method to prevent addition of duplicates	

