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CS1110    Lec. 13                                   14 Oct 2010            ���
Another classy lecture: Casting about (secs 4.2, 4.3)	



1.  the class hierarchy	


2.  apparent and real classes	


3.  casting between classes	



4.  operator instanceof	


5.  function equals	


6.  abstract methods/classes 

(section 4.7, labs next week)	



Reading for next time: Sec. 2.3.8 and chapter 7 on loops. 	



A4 due Saturday; make sure you're using Monday's a4.zip 
files (see assignments page on the course website for 
description of updates)	



Time management tip #42: schedule deadlines on your calendar;  	


also schedule the time it will take to do the work.	
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Object	



Acct	



Cm	

 Um	



the class hierarchy:	



Setting: Cmail (Cm) and Umail (Um) accounts. 	



They have commonalities, like netIDs and an 
"alert" ability, so we make them subclasses of 
class Acct.  	



b0	


Acct	



Cm	

Cm(String)���

nid ���
Acct(String)���
alert(String)   getID()	



cc1	



b1	


Acct	



Um	

Um(String)	



nid ���
Acct(String)���
alert(String)   getID()	



uu2	



[Note: Acct might best be made an abstract class; see last slide and next lab.]	



But, Cm and Um override Acct method 
alert(String), due to system differences.	


Cmail shows a “Web clip”;  Umail creates a popup. 	



alert(String)���
newClip(String)	



alert(String)���
popUp(String)	

Why do we keep drawing the overriden alert?	
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b0	


Acct	



Cm	

Cm(String)���
alert(String)���
newClip(String)	



nid���
Acct(String)���
alert(String)   getID()	



cc1	



b1	


Acct	



Um	

Um(String)���
alert(String)���
popUp(String)	



nid���
Acct(String)���
alert(String)   getID()	



uu2	



b0	



The apparent (declared) type of a is Acct, 
and will always be Acct.	


This is a syntactic property having to do with 
compiling.	



c	


Cm	



b1	

u	


Um	



a	


Acct	



The real type of a, the real class of the 
object whose name is currently in a, is Cm, 
but could change via assignment: a= u; 	


This is a semantic property having to do with the 
current value of a.	



Is a= c; legal?  	



b0	



b0 is an Acct, but it's 
also a Cm.	
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Sources of apparent and real types	



Acct a= new Cm("LJL2");	


Um u= new Um("DJG17");	



a= u; // apparent type still Acct, real type changes to Um 	



Apparent types come 
from declarations	

 real types come from assignment	
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Implicit casting up the class hierarchy (good news)	



b1	


Acct	



Um	

Um(String)���
alert(String)���
popUp()	



nid���
Acct(String)���
alert(String)   getID()	



uu2	



u has apparent type Um,                                                                   
but our list v has an apparent type based on Acct.  	



Does this mean we must do an explicit cast to add u to v?	



       v.add( (Acct) u); 	



b0       b14        …	

Vector<Acct>   v	


 0         1           2 …	



b1	

u	


Um	



Nope; luckily, casts up the hierarchy are automatic, allowing this:	



       v.add(u);	



[Not drawing Vectors as objects to save space]	
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b0	


Acct	



Cm	

Cm(String)���
alert(String)���
newClip(String)	



nid���
Acct(String)���
alert(String)   getID()	



cc1	



b1	


Acct	



Um	

Um(String)���
alert(String)���
popUp(String)	



nid���
Acct(String)���
alert(String)   getID()	



uu
2	



b0       null      b1	

Vector<Acct>   v	


 0         1           2	



More good news:	


Overriding (still) has the correct behavior	



First, the compiler checks that apparent 
type Acct has an alert method; if that 
succeeds, then the bottom-up rule is 
applied.	



v.get(0).alert() will call the over-riding, 
Cmail-specific alert() method. 	



v.get(2).alert() will call the over-riding, 
Umail-specific alert() method.	
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b0	


Acct	



Cm	

Cm(String)���
alert(String)���
newClip(String)	



nid���
Acct(String)���
alert(String)   getID()	



cc1	



b1	


Acct	



Um	

Um(String)���
alert(String)���
popUp(String)	



nid���
Acct(String)���
alert(String)   getID()	



uu
2	



b0       null      b1	

Vector<Acct>   v	


 0         1           2	



A sensible policy with an embedded “gotcha”: 
The apparent type can rule out some available 
methods.	



The apparent type of v,  based on Acct, 
does not have a newClip method.	



Therefore, the compiler rules the call    
v.get(0).newClip(“FLOOD”)       
illegal, even though in practice, the real 
type of v.get(0) might mean that  
newClip(…) would be available. 	
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b0	


Acct	



Cm	

Cm(String)���
alert(String)���
newClip(String)	



nid���
Acct(String)���
alert(String)   getID()	



cc1	



b1	


Acct	



Um	

Um(String)���
alert(String)���
popUp(String)	



nid���
Acct(String)���
alert(String)   getID()	



uu
2	



b0	

a	



Workaround: check the real type.	



If we insist on calling newClip at all costs, 
then we need to explicitly downward-cast 
and/or to declare fresh variables of the 
right apparent type (Cm, not Acct). 	



To assign correctly to these fresh 
variables, we need to check the real type:	



    if ( a instanceof Cm) {	


             Cm newG= (Cm) a;	


             …	


}	



Acct	



need this downward cast	


(can’t just wedge “big” class into small)	
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Example	


public class Acct {	


      // If Acct is a Cm, apply newClip,	


         o.w, do nothing. 	


    public static void tryClip(Acct a, String msg) {	


         if ( !                                ) 	


               return;	


         // a is a Cm	



        return c.newClip(msg);	


}	



Apparent type of a: Acct���
Real type of a: Cm	



Cm(String)���
alert(String)���
newClip(String)	



b0	


Acct	



Cm	



nid ���
Acct(String)���
alert(String)   getID()	



cc1	



tryClip: 1	

 Acct	



a	

 b0	

 c	

 b0	


Acct	

 Cm	



// downward cast	

Cm c= (Cm) a ;	



Here,    (Um) a���
would lead to a runtime error.	



Don’t try to cast an object to 
something that it is not!	



(a instanceof Cm)	
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The correct way to write method equals 	



public class Acct {  	


      …	


      /** = “ob is an Acct with the same���
                 values in its fields as this Acct” */	


      public boolean equals (Object ob) {	



         if (!(ob instanceof Acct)) return false;	


         Acct a= (Acct) ob;  // why? b/c Objects don’t 

	

 	

 	

// generally have  nids	


         return  nid.equals(a.nid);	


}	



Acct	



b0	



Cm(String)���
alert(String)���
newClip(String)	



Cm	



nid ���
Acct(String)���
alert(String)   getID()���
equals(Object)  ���

cc1	



Object	



equals(Object)	

Note that method equals should take 
arbitrary Objects as arguments.	



Method equals helps prevent addition 
of duplicates to lists, etc.	
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Abstract methods and classes (see lab next week)	


Make a (superclass) method abstract to force (non-
abstract) subclasses to override it (and hence define it):	



Example: In Acct (note stranded semi-colon!): 	


	

public abstract void alert(String s) ;	



 means every sub-type of email account must have an 
alert method --- different for different systems.	



Make a (super)class abstract if there can only be subclass 
objects, but you still want default behaviors/info.  	



Example: Nothing is just a generic Animal (it's a Pig, or a 
Butterfly, or a Person),and all live somewhere; but all 
Animals breathe oxygen. So, can't create an "Animal":	


      public abstract class Animal() {	



	

public boolean breathesOxygen() {return true;}	


	

public abstract String habitat() ; 	



       }	




