
1	

1	

CS1110 Lec. 13 14 Oct 2010 ���
Another classy lecture: Casting about (secs 4.2, 4.3)	

1.  the class hierarchy	

2.  apparent and real classes	

3.  casting between classes	

4.  operator instanceof	

5.  function equals	

6.  abstract methods/classes

(section 4.7, labs next week)	

Reading for next time: Sec. 2.3.8 and chapter 7 on loops. 	

A4 due Saturday; make sure you're using Monday's a4.zip
files (see assignments page on the course website for
description of updates)	

Time management tip #42: schedule deadlines on your calendar; 	

also schedule the time it will take to do the work.	

2	

Object	

Acct	

Cm	

 Um	

the class hierarchy:	

Setting: Cmail (Cm) and Umail (Um) accounts. 	

They have commonalities, like netIDs and an
"alert" ability, so we make them subclasses of
class Acct. 	

b0	

Acct	

Cm	

Cm(String)���

nid ���
Acct(String)���
alert(String) getID()	

cc1	

b1	

Acct	

Um	

Um(String)	

nid ���
Acct(String)���
alert(String) getID()	

uu2	

[Note: Acct might best be made an abstract class; see last slide and next lab.]	

But, Cm and Um override Acct method
alert(String), due to system differences.	

Cmail shows a “Web clip”; Umail creates a popup. 	

alert(String)���
newClip(String)	

alert(String)���
popUp(String)	

Why do we keep drawing the overriden alert?	

3	

b0	

Acct	

Cm	

Cm(String)���
alert(String)���
newClip(String)	

nid���
Acct(String)���
alert(String) getID()	

cc1	

b1	

Acct	

Um	

Um(String)���
alert(String)���
popUp(String)	

nid���
Acct(String)���
alert(String) getID()	

uu2	

b0	

The apparent (declared) type of a is Acct,
and will always be Acct.	

This is a syntactic property having to do with
compiling.	

c	

Cm	

b1	

u	

Um	

a	

Acct	

The real type of a, the real class of the
object whose name is currently in a, is Cm,
but could change via assignment: a= u; 	

This is a semantic property having to do with the
current value of a.	

Is a= c; legal? 	

b0	

b0 is an Acct, but it's
also a Cm.	

4	

Sources of apparent and real types	

Acct a= new Cm("LJL2");	

Um u= new Um("DJG17");	

a= u; // apparent type still Acct, real type changes to Um 	

Apparent types come
from declarations	

 real types come from assignment	

5	

Implicit casting up the class hierarchy (good news)	

b1	

Acct	

Um	

Um(String)���
alert(String)���
popUp()	

nid���
Acct(String)���
alert(String) getID()	

uu2	

u has apparent type Um,
but our list v has an apparent type based on Acct. 	

Does this mean we must do an explicit cast to add u to v?	

 v.add((Acct) u); 	

b0 b14 …	

Vector<Acct> v	

 0 1 2 …	

b1	

u	

Um	

Nope; luckily, casts up the hierarchy are automatic, allowing this:	

 v.add(u);	

[Not drawing Vectors as objects to save space]	

6	

b0	

Acct	

Cm	

Cm(String)���
alert(String)���
newClip(String)	

nid���
Acct(String)���
alert(String) getID()	

cc1	

b1	

Acct	

Um	

Um(String)���
alert(String)���
popUp(String)	

nid���
Acct(String)���
alert(String) getID()	

uu
2	

b0 null b1	

Vector<Acct> v	

 0 1 2	

More good news:	

Overriding (still) has the correct behavior	

First, the compiler checks that apparent
type Acct has an alert method; if that
succeeds, then the bottom-up rule is
applied.	

v.get(0).alert() will call the over-riding,
Cmail-specific alert() method. 	

v.get(2).alert() will call the over-riding,
Umail-specific alert() method.	

2	

7	

b0	

Acct	

Cm	

Cm(String)���
alert(String)���
newClip(String)	

nid���
Acct(String)���
alert(String) getID()	

cc1	

b1	

Acct	

Um	

Um(String)���
alert(String)���
popUp(String)	

nid���
Acct(String)���
alert(String) getID()	

uu
2	

b0 null b1	

Vector<Acct> v	

 0 1 2	

A sensible policy with an embedded “gotcha”:
The apparent type can rule out some available
methods.	

The apparent type of v, based on Acct,
does not have a newClip method.	

Therefore, the compiler rules the call
v.get(0).newClip(“FLOOD”)
illegal, even though in practice, the real
type of v.get(0) might mean that
newClip(…) would be available. 	

8	

b0	

Acct	

Cm	

Cm(String)���
alert(String)���
newClip(String)	

nid���
Acct(String)���
alert(String) getID()	

cc1	

b1	

Acct	

Um	

Um(String)���
alert(String)���
popUp(String)	

nid���
Acct(String)���
alert(String) getID()	

uu
2	

b0	

a	

Workaround: check the real type.	

If we insist on calling newClip at all costs,
then we need to explicitly downward-cast
and/or to declare fresh variables of the
right apparent type (Cm, not Acct). 	

To assign correctly to these fresh
variables, we need to check the real type:	

 if (a instanceof Cm) {	

 Cm newG= (Cm) a;	

 …	

}	

Acct	

need this downward cast	

(can’t just wedge “big” class into small)	

9	

Example	

public class Acct {	

 // If Acct is a Cm, apply newClip,	

 o.w, do nothing. 	

 public static void tryClip(Acct a, String msg) {	

 if (!) 	

 return;	

 // a is a Cm	

 return c.newClip(msg);	

}	

Apparent type of a: Acct���
Real type of a: Cm	

Cm(String)���
alert(String)���
newClip(String)	

b0	

Acct	

Cm	

nid ���
Acct(String)���
alert(String) getID()	

cc1	

tryClip: 1	

 Acct	

a	

 b0	

 c	

 b0	

Acct	

 Cm	

// downward cast	

Cm c= (Cm) a ;	

Here, (Um) a���
would lead to a runtime error.	

Don’t try to cast an object to
something that it is not!	

(a instanceof Cm)	

10	

The correct way to write method equals 	

public class Acct { 	

 …	

 /** = “ob is an Acct with the same���
 values in its fields as this Acct” */	

 public boolean equals (Object ob) {	

 if (!(ob instanceof Acct)) return false;	

 Acct a= (Acct) ob; // why? b/c Objects don’t

	

 	

 	

// generally have nids	

 return nid.equals(a.nid);	

}	

Acct	

b0	

Cm(String)���
alert(String)���
newClip(String)	

Cm	

nid ���
Acct(String)���
alert(String) getID()���
equals(Object) ���

cc1	

Object	

equals(Object)	

Note that method equals should take
arbitrary Objects as arguments.	

Method equals helps prevent addition
of duplicates to lists, etc.	

11	

Abstract methods and classes (see lab next week)	

Make a (superclass) method abstract to force (non-
abstract) subclasses to override it (and hence define it):	

Example: In Acct (note stranded semi-colon!): 	

	

public abstract void alert(String s) ;	

 means every sub-type of email account must have an
alert method --- different for different systems.	

Make a (super)class abstract if there can only be subclass
objects, but you still want default behaviors/info. 	

Example: Nothing is just a generic Animal (it's a Pig, or a
Butterfly, or a Person),and all live somewhere; but all
Animals breathe oxygen. So, can't create an "Animal":	

 public abstract class Animal() {	

	

public boolean breathesOxygen() {return true;}	

	

public abstract String habitat() ; 	

 }	

