
1	

1	

CS1110 lec 12: Analysis of lies using recursion 07 Oct 2010	

•  Prelim, 7:30-9pm today	

•  Last name A-K: go to Olin 155	

•  Last name L-Z: go to Olin 255	

•  A4 due Saturday Oct. 16	

•  No labs next week (Tue-Wed Oct 11-12), due to fall break	

•  No office/consulting hours Friday through Tuesday inclusive (Oct 8-12), due to fall break	

Reading for next lecture (casting about): Secs 4.2 & 4.3 	

Have your iClickers out.	

Today: recursion in an interdisciplinary application: 	

computer science/computational linguistics, psychology, history/politics 	

2	

Lies, damned lies, and statistics	

James Pennebaker et al., “Lying words: predicting deception from
linguistic styles”, 2003:	

Claim: deceptive communication is characterized by (among others):	

•  fewer 1st-person singular and 3rd-person pronouns (“I”, “they”) 	

•  more negative emotion words (“hate”, “enemy”)	

•  fewer “complex/exclusive” words (“but”, “except”, “without”)	

Research question (1): What really are the best cues? (or models)	

Sub-question: is there a more realistic, convenient source of “lies”? 	

The “Iraq War Card False Statements Database”
http://projects.publicintegrity.org/WarCard/Search/Default.aspx	

3	

Where we are, and why	

[besides automatic lie detection being inherently cool]	

Research question 1: What are the best linguistic lie cues (or models)? 	

Research question 2: are the "true" and "false" statements regarding Iraq
by top Bush administration officials distinguishable? This would imply
something about their beliefs.	

•  Demonstration of interdisciplinary research involving computer science,
psychology/linguistics, politics and history	

•  Demonstration of methodology in approaching a programming problem	

•  stepwise refinement, writing and reading specs carefully, String
manipulation, recursion, testing, etc.	

(Lecture loosely based on joint work with CS grad student Cristian Danescu-
Niculescu-Mizil and CS undergrad Haden Lee, in consultation with Comm./IS Prof.
Jeff Hancock.)	
 4	

Formulating the task: might something be a lie cue?	

Given 	

•  a target word w (e.g., “they”) 	

• a file containing “lie span mark-up”: 	

Consider these two statistics for w:	

 number of hits: occurrences of w in a “lie” span	

 number of misses: occurrences of w not in a “lie” span	

Write a class LieData with method counts(w,…) that will tell us the
number of hits and the number of misses for w in a specific text (file).	

 … with respect to iraq, the problem is quite	

 simple. we suspect they are
developing weapons of mass destruction. we more than suspect it; we know
it. they could…	

spanStart	

spanEnd	

5	

To write: a class LieData with method counts(w).	

We need to track the source file’s text, spanStart, spanEnd, and the target word w.	

Assume we want separate results for separate texts e.g., (comparing lab vs. life)	

Q: How should we declare the relevant entities? 	

(A) text and the span delimiters are stored in individual objects	

 private String text; private String spanStart; private String spanEnd;	

 public String counts(String w) {…} 	

(B) everything is a parameter to static method counts	

 public static String counts(String textFileName, String spanStart,

	
String spanEnd, String w) {…} 	

(C) this mixture of objects and static: 	

 private String text; private String spanStart; private String spanEnd	

 public static String counts(String w) {…}	

6	

1.  Get data from source file into Java-manageable format	

2.  Get target word w 	

3.  Process each occurrence of w in text	

•  Is it a hit or a miss?	

4.  Report relevant statistics	

parameter for method counts(w)	

write a constructor LieData(<file>) using In.java to initialize text	

output of counts(w): “hits <h>; misses <m>; ratio: <h>/<m>”	

2	

7	

text: "… end of it all they will bring to the table a new means… " 	

The core recursive idea: how many hits past an index i?	

w: the target word, i.e., "they"	

i: a starting index	

iW: index of 1st occurrence of w after index i 	

iW + w.length() 	

Figure out if w at iW is a hit.	
 Handy version of indexOf: iW= text.indexOf(w, i).	

Then, add the number of hits for w here (starting at iW + w.length()) 	

8	

We need the output of helper method countsFrom(String w, int i) to encode both
the numbers of hits and the number of misses in a way such that we can extract or
add to them. But a function can only return one thing…	

Q: What format should countsFrom’s output be?	

(A) an int, the difference between the # of hits and the # of misses	

(B) a String “hits: <# of hits>; misses: <#misses>”	

(C) a double, using decimal as separator. Example: 4.5 means 4 hits, 5 misses	

(D) an object that maintains hits and misses (we would have to write the class)	

9	

/** An instance maintains a number of hits and a number of misses */	

public class TallyPair {	

 /** number of hits */	

 public int hits; 	

 /** number of misses */	

 public int misses; 	

 /** Constructor: a TallyPair with 0 hits and 0 misses */	

 public TallyPair() {	

 ; 	

 }	

 /** = hits: <# of hits>; misses <# of misses> */	

 public String toString() {	

 return "hits: " + hits + "; misses: " + misses + "; " 	

 + "ratio: " + (double)hits/misses;	

 }	

}	

A helper class for storing hit/miss pairs	

(A better choice would be to make this a private static nested class: see pp 348—350.) 	

10	

… they …(no spanEnds) … spanEnd …	

iW, an index of w	
 iEnd: index of closest spanEnd
after iW	

boolean procedure isHit(String w, int iW)	

How do we determine if w at index iW is a hit or not?	

Handy version of lastIndexOf: 	

return iEnd != - 1 && text.lastIndexOf(spanStart, iEnd) < iW;	

11	

… and that’s no lie!	

We wish you luck on tonight’s prelim …	

