
1	

1	

CS1110 lec 12: Analysis of lies using recursion 07 Oct 2010	

•  Prelim, 7:30-9pm today	

•  Last name A-K: go to Olin 155	

•  Last name L-Z: go to Olin 255	

•  A4 due Saturday Oct. 16	

•  No labs next week (Tue-Wed Oct 11-12), due to fall break	

•  No office/consulting hours Friday through Tuesday inclusive (Oct 8-12), due to fall break	

Reading for next lecture (casting about): Secs 4.2 & 4.3 	

Have your iClickers out.	

Today: recursion in an interdisciplinary application: 	

computer science/computational linguistics, psychology, history/politics 	

2	

Lies, damned lies, and statistics	

James Pennebaker et al., “Lying words: predicting deception from
linguistic styles”, 2003:	

Claim: deceptive communication is characterized by (among others):	

•  fewer 1st-person singular and 3rd-person pronouns (“I”, “they”) 	

•  more negative emotion words (“hate”, “enemy”)	

•  fewer “complex/exclusive” words (“but”, “except”, “without”)	

Research question (1): What really are the best cues? (or models) 	

More realistic, convenient source of “lies”? 	

The “Iraq War Card False Statements Database”
http://projects.publicintegrity.org/WarCard/Search/Default.aspx	

3	

Where we are, and why	

[besides automatic lie detection being inherently cool]	

Research question 1: What are the best linguistic lie cues? (or
models) 	

Research question 2: given statements regarding Iraq by top Bush
administration officials, are the “true” and “false” ones
distinguishable? This would imply something about their beliefs.	

•  Demonstration of interdisciplinary research involving computer
science, psychology/linguistics, politics and history	

•  Demonstration of methodology in approaching a programming
problem	

•  stepwise refinement, writing and reading specs carefully, String
manipulation, recursion, testing, etc.	

(Lecture loosely based on joint work with CS grad student Cristian Danescu-
Niculescu-Mizil and CS undergrad Haden Lee, in consultation with Comm. Prof. Jeff
Hancock.)	

 4	

Formulating the task: might something be a lie cue?	

Given 	

•  a target word w (e.g., “they”) 	

• a file containing “lie span mark-up”: 	

Consider these two statistics for w:	

 number of hits: occurrences of w in a “lie” span	

 number of misses: occurrences of w not in a “lie” span	

Write a class LieData with method counts(w,…) that will tell us the
number of hits and the number of misses for w in a text (file).	

 … with respect to iraq, the problem is quite	

 simple. we suspect they are developing weapons of mass
destruction. we more than suspect it; we know it. they could…	

spanStart	

 spanEnd	

5	

To write: a class LieData with method counts(w). 	

We need to track the source file’s text, spanStart, spanEnd, and the target word w.	

Q: How should we declare the relevant entities? 	

(A) text and the span delimiters are stored in individual objects	

 private String text; private String spanStart; private String spanEnd;	

 public String counts(String w) {…} 	

(B) everything is a parameter to static method counts	

 public static String counts(String textFileName, String spanStart,

	

String spanEnd, String w) {…} 	

(C) this mixture of objects and static: 	

 private String text; private String spanStart; private String spanEnd	

 public static counts(String w) {…}	

6	

1.  Get data from source file into Java-manageable format	

2.  Get target word w 	

3.  Process each occurrence of w in the source file’s text	

•  Is it in or not in a span?	

4.  Report relevant statistics	

parameter for method counts(w)	

create new object via “new LieData(<file>)” with String field text	

output of counts(w): “hits <h>; misses <m>”	

2	

7	

text: "… end of it all they will bring to the table a new means… " 	

The core recursive idea: how many hits past an index i?	

w: the target word, i.e., "they"	

i: a starting index	

iW: index of 1st occurrence of w after index i 	

iW + w.length() 	

if h is the number of hits for w here	

(i.e., past iW + w.length()) ... 	

… then if the "they" at iW is a hit, the # of hits past i is h + 1;	

if the "they" at iW is a miss, the # of hits past i is h.	

Handy version of indexOf: iW= text.indexOf(w, i).	

8	

We need the output of helper method countsFrom(String w, int iW) to encode
both the numbers of hits and the number of misses in a way such that we can
extract or add to them.	

Q: What format should countsFrom’s output be?	

(A) an int, the difference between the # of hits and the # of misses	

(B) a String “hits: <# of hits>; misses: <#misses>”	

(C) a double, using decimal as separator. Example: 4.5 means 4 hits, 5 misses	

(D) an object that maintains hits and misses (we would have to write the class)	

9	

/** An instance maintains a number of hits and a number
of misses */	

public class TallyPair {	

 public int hits; // number of hits	

 public int misses; // number of misses	

 /** Constructor: a TallyPair with 0 hits and 0 misses */	

 public TallyPair() {	

 ; 	

 }	

 /** = hits: <# of hits>; misses <# of misses> */	

 public String toString() {	

 return "hits: " + hits + "; misses: " + misses;	

 }	

}	

A helper class for storing hit/miss pairs	

(A better choice would be to make this a private static nested class: see pp 348—350.) 	

10	

… they …(no spanEnds) … spanEnd …	

iW, an index of w	

 iEnd: index of closest spanEnd
after iW	

boolean procedure isHit(String w, int iW)	

How do we determine if w at index iW is a hit or not?	

Handy version of lastIndexOf: 	

return iEnd != - 1 && text.lastIndexOf(spanStart, iEnd) < iW;	

