
1	

1	

CS1110 Lec. 11 5 Oct 2010���
More on Recursion	

Study Sect 15.1, p. 415. Watch activity 15-2.1 on the CD.
In DrJava, write and test as many of the self-review
exercises as you can (disregard those that deal with arrays).	

No Labs the week of fall break
(next week)	

No office hours Friday, Monday,
Tuesday, 8-12 October	

More lunch dates scheduled on
the CMS. You are invited.	

A3 times ���
mean 4.2 median 3.5���
7..9 hours: 17���
10..14 hours: 7	

15..15 hours: 1	

Thursday 7:30pm prelim:	

A-K Olin 155 L-Z Olin 255	

Wednesday 3:35 lab is less crowded; ���
go there instead?	

2	

. 	

. 	

. 	

. 	

. 	

. 	

. 	

. 	

while there is room	

 A draws or ;	

 B draws or ;	

A wants to get a solid closed curve. 	

B wants to stop A from getting a solid
closed curve.	

Who can win? What strategy to use?	

. 	

. 	

. 	

. 	

. 	

. 	

. 	

Board can be any size: m by n
dots, with m > 0, n > 0	

A won the game to the right
because there is a solid closed
curve.	

A game	

A and B
alternate

moves	

3	

What does private mean?	

Look it up! Index says p 155. 155-156 says: a component declared
with modifier private in class C is accessible only in class C. 	

a1	

Person	
fbf	
 a2	

mutual() { … }	

/** = “the female best-friend	

 relation is mutual” —this	

person’s best friend thinks this	

person is their best friend. */	

public boolean mutual() {	

 return fbf!= null && 	

 this == fbf.fbf;	

}	

a2	

Person	
fbf	
 a1	

mutual() { … }	

Can’t reference fbf in here	

SClass	

4	

/** = if y is even then 2*y otherwise y*/	

public static boolean d(int y) {	

 if (y%2 == 0) {	

 int k= 2 * y;	

 return k;	

 } else	

 return y; 	

}	

A: Never, since the argument is odd	

B: Just before k= 2*y is executed	

C: Just the method body is executed	

D: During step 1 of execution of the call	

Consider the call d(5).	

When is local variable
k created (or drawn)
during evaluation of the
call?	

5	

/** = non-negative n, with commas every 3 digits ���
 e.g. commafy(5341267) = “5,341,267” */	

public static String commafy(int n) {	

}	

What is the base case?	

A: 0..1	

B: 0..9	

C: 0..99	

D: 0..999	

E: 0..9999	

6	

Executing
recursive
function

calls.	

/** = non-negative n, with commas every 3 digits ���
 e.g. commafy(5341267) = “5,341,267” */	

public static String commafy(int n) {	

 1: if (n < 1000) 	

	
 2: return “” + n;	

 // n >= 1000	

 3: return commafy(n/1000) + “,” + to3(n%1000);	

}	

/** = p with at least 3 chars —	

 0’s prepended if necessary */	

public static String to3(int p) {	

 if (p < 10) return “00” + p;	

 if (p < 100) return “0” + p;	

 return “” + p;	

}	

 n	

commafy: 1 	
 Demo	

commafy(5341266 + 1)	

2	

7	

Recursive functions	

/** = b c. Precondition: c ≥ 0*/ ���
public static int exp(double b, int c)	

	
Properties:	

(1)   b c = b * b c-1 	

(2)   For c even	

	
 	
b c = (b*b) c/2	

e.g 3*3*3*3*3*3*3*3	

 = (3*3)*(3*3)*(3*3)*(3*3)	

8	

Recursive functions	

/** = b c. Precondition: c ≥ 0*/ ���
public static int exp(double b, int c) {	

 if (c == 0)	

 return 1.0;	

 if (c is odd)	

 return b * exp(b, c–1);	

 // c is even and > 0	

 return exp(b*b, c / 2);	

}	

c number of calls	

0 1	

1 2	

2 2	

4 3	

8 4	

16  5	

32 6	

2n n + 1	

32768 is 215	

so b32768 needs only 16 calls!	

9	

Binary arithmetic	

Decimal Binary Octal	
 	
 	
Binary	

00 	
 00 	
 00 	
 	
20 = 1 	
1 	
 	
	

01 	
 01 	
 01 	
 	
21 = 2 	
 	
10 	
	

02 	
 10 	
 02 	
 	
22 = 4 	
 	
100	

03 	
 11 	
 03 	
 	
23 = 8 	
 	
1000 	

04 	
 100 	
 04 	
 	
24 = 16 	
 	
10000	

05 	
 101 	
 05 	
 	
25 = 32 	
 	
100000	

06 	
 110 	
 06 	
 	
26 = 64 	
 	
1000000	

07 	
 111 	
 07 	
 	
215 = 32768 	
1000000000000000	

08 	
 1000 	
 10 	
 	
 	
 	
	

09 	
 1001 	
 11 	

10 	
 1010 	
 12	

Test c odd: Test last bit = 1	

Divide c by 2: Delete the last bit	

Subtract 1 when odd: Change last bit from 1 to 0.	

Exponentiation algorithm processes binary rep. of the exponent.	

10	

Hilbert’s space-filling curve	

Hilbert(1):	

Hilbert(2):	

Hilbert(n):	

H(n-1)���
left	

As the size of each
line gets smaller and
smaller, in the limit,

this algorithm fills
every point in space.
Lines never overlap.	

H(n-1)���
dwn	

H(n-1)���
dwn	

H(n-1)���
right	

All methods used
in today’s lecture
will be on course
website	

11	

Hilbert’s space-filling curve	

