

$^{**} = b^{c}$. Precondition: $c \ge 0^{*}$	c	number of calls
public static int exp(double b, int c) {	0	1
if (c == 0)	1	2
return 1.0;	2	2
if (c is odd)	4	3
return b * exp(b, c–1);	8	4
// c is even and > 0	16	5
$\mathbf{return} \exp(0^{1}0, \mathbf{c}^{T} \mathbf{Z});$	32	6
1	2 ⁿ	n + 1
32768 is 2 ¹⁵		
so b ³²⁷⁶⁸ needs only 16 calls!		

Decimal	Binary	Octal	1 Binary		
00	00	00	$2^0 = 1$	1	
01	01	01	$2^1 = 2$	10	
02	10	02	$2^2 = 4$	100	
03	11	03	$2^3 = 8$	1000	
04	100	04	$2^4 = 16$	10000	
05	101	05	$2^5 = 32$	100000	
06	110	06	$2^6 = 64$	1000000	
07	111	07	$2^{15} = 32768$	1000000000000000	
08	1000	10			
09	1001	11	Test c odd: Test 1	ast bit = 1	
10	1010	12	² Divide c by 2: Delete the last bit		
			Subtract 1 when odd	: Change last bit from 1 to	

