
1	

1	

CS1110 Lecture 09 28 Sept ���
Developing (String-processing) programs; ���

class Vector; wrapper classes ���

Prelim: 7:30-9PM Thursday 7 October. 	

 Last name A-K: go to Olin Hall 155. Last name L-Z: go to Olin Hall 255.	

If you have a conflict and didn't receive an acknowledgment email yesterday,
email Maria Witlox, mwitlox@cs.cornell.edu TODAY.	

•  Past prelims are posted to the course website. Use DrJava to check your answers! 	

• Thursday: A handout will explain what is on prelim 1	

•  Sunday: Review session, 1-3PM, Phillips Hall 101 (if you miss it, the slides will
be posted)	

• A3 is due Wed night on the CMS. Form any groups beforehand.	

Reading for Thursday's lecture: pp. 403—408, skipping section 15.1.2	

* Recursion can be a difficult topic, but we’ll make it easy.	

Have your iClickers out.

2	

An application: String processing, stepwise refinement,
usefulness of Javadoc, problem solving	

Strings are a particularly important type, because lots of information
(especially non-numerical data) is stored in Strings.

For example, many webpages can, for many intents and purposes, be
considered to be Strings.

Application: “scraping” (extracting) live stock quotes from the Web:
getQuote("goog") will print out Google's [ticker symbol:
"GOOG"] current stock price, and store a list of all previous stock-
price requests;

showRecord() will return something like this:
"[aapl @ Mon Sep 27 10:00:40 EDT 2010: $294.05, aapl @ Mon Sep
27 10:00:48 EDT 2010: $293.7, goog @ Mon Sep 27 10:09:02 EDT
2010: $534.38]"

3	

Reminder: Principles and strategies	

Develop algorithm step by step, using principles and strategies
embodied in “stepwise refinement” or “top-down
programming”. READ Sec. 2.5 and Plive p. 2-5.	

• Take small steps. Do a little at a time	

• Refine. Replace an English statement (what to do) by a
sequence of statements to do it (how to do it).	

• Refine. Introduce a local variable —but only with a reason	

• Compile often	

• Intersperse programming and testing	

• Write method specifications —before writing the bodies	

• Separate your concerns: focus on one issue at a time	

Note the similarities to outlining and writing an essay!	

4	

1.  What information do we need to store?	

•  what objects? what should be in the objects, vs. what should be

static? What types should the variables be?	

2.  What methods do we need? (Specify them carefully, and stub them
in!)	

a)  How do we implement a list? (answer: Vectors)	

b)  How do we implement list-based methods?	

c)  How do we actually get stock-quote data?	

i.  how can we access web pages?	

ii.  can we treat their contents as Strings, since

we're good at that?	

iii.  how can we convert String prices to numbers?	

 (answer: Wrapper classes)	

Outline for writing class StockQuote	

2	

5	

Let's answer question one. Below, we've omitted "private" for brevity.	

A. String symbol; // ticker symbol (case insensitive)	

 Date time; // time the quote was taken;	

	

double price; // price of the stock when quote was recorded	

	

ListOfStockQuotes record; // list of all requested quotes	

 public static void getQuote(String s); 	

B. Same as A, but getQuote(String s) is not static	

C. String symbol; // ticker symbol (case insensitive)	

 Date time; // time the quote was taken;	

	

double price; // price of the stock when quote was recorded	

	

static ListOfStockQuotes record; // list of all requested quotes	

 public static void getQuote(String s); 	

D. Same as C, but getQuote(String s) is not static	

E. None of the above	

C's
only
diff
from
A	

6	

In the interactions pane, you can try the following (Person.java and	

 StockQuote.java need to be in the working directory and compiled):	

import java.util.*; 	

import javax.swing.*;	

Vector v= new Vector(); // v can store any object	

v.add(new JFrame()); 	

v.add(new Person("Smith", 1990, false));	

v.get(1) // returns toString for "Smith" (indexing starts at 0)	

v.toString() // contents of entire vector, using each object's toString()	

Class Vector – for maintaining lists of objects [more in lab] 	

// Important syntax: record can only store (names of) StockQuotes.	

Vector<StockQuote> record= new Vector<StockQuote>(); 	

7	

Wrapper classes – a way to treat primitive types as objects 	

An instance of class Integer contains, or "wraps", one (immutable)
int value.	

a0	

 [unknown field name]	

 5	

Integer(int) Integer(String) 	

toString() equals(Object) intValue()	

toString(int) toBinary(int)	

valueOf(String) parseInt(String)	

Static components:	

MIN_VALUE MAX_VALUE	

file drawer for Integer	

Integer	

•  Sometimes objects are required; e.g., Vectors can only store objects:
	

v.add(new Integer(5)); // Integer is an object version of int	

•  wrapper objects provide a place to store useful methods	

[In newer versions of Java, v.add(5) is allowed; the non-object 5 is wrapped in an Integer object and
the name of that object is added to v.] 	

8	

Each primitive type has a corresponding wrapper class. 	

Primitive type 	

Wrapper class	

int 	

 	

Integer	

long 	

 	

Long	

float 	

 	

Float	

double 	

 	

Double	

char 	

 	

Character	

boolean	

 	

Boolean	

Each wrapper class has:	

• Instance methods, e.g. equals,
constructors, toString,	

• Useful static constants and
methods.	

You don't have to memorize the methods of the wrapper classes. But
be aware of them and look them up when necessary. Use Gries/
Gries, Section 5.1, and ProgramLive, 5-1 and 5-2, as references.	

Integer k= new Integer(63); int j= k.intValue();	

