
1	

1	

CS1110 Classes, stepwise refinement 23 Sep 2009	

Miscellaneous points about classes.���
More on stepwise refinement.	

Prelim 7:30-9:00 Thursday, 7 October, Olin Hall 155 & 255	

Review session: 1:00-3:00, Sunday, 3 Oct., Philips 101	

Prelim conflict? Email
Maria Witlox by Friday.
Tell her what the conflict is
(which course, work,
reason for being out of
town, etc.)	

mwitlox@cs.cornell.edu	

Next: wrapper classes.
Section 5.1 of class text 	

2	

A1: 130 done
82 to go

Let’s finish early this weekend.

You can still work on A3 as your A1 iterative process
proceeds. But the A1 part must be completed before you
submit A3.

Points are deducted on A3 if there are errors in A1.

3	

Help: Get it now if you need it!!	

• Call Cindy 255-8240 for an aptmnt with David Gries.
• Email Lillian Lee to make an aptmnt: llee@cs.cornell.edu

• See a consultant in the ACCEL Lab:
 Sun, Mon, Tues, Wed, Thurs during office hours.	

• See a TA.	

• Peer tutoring (free). Ask in Olin 167 or visit
http://www.engineering.cornell.edu, click on "student services".
On the page that comes up, click on "Engineering Learning
Initiatives (ELI.) " in the left column, upper part. Then, click on
"peer tutoring" in the left column.

4	

Content of this lecture	

Go over miscellaneous points to round out your knowledge of
classes and subclasses. There are a few more things to learn
after this, but we will handle them much later.

•  Inheriting fields and methods and overriding methods.	

 Sec. 4.1 and 4.1.1: pp. 142–145	

•  Purpose of super and this. Sec. 4.1.1, pp. 144–145.	

•  More than one constructor in a class; another use of this.	

 Sec. 3.1.3, pp. 110–112.	

•  Constructors in a subclass —calling a constructor of the	

 super-class; another use of super. Sec. 4.1.3, pp. 147–148.	

Then, we develop a nice function to anglicize integers, e.g.	

 for 235, produce “two hundred thirty five”.	

5	

Employee c= new Employee(“Gries”, 1969, 50000);	

c.toString()	

a0	

Object	

name	
 “Gries”	
 start	
 1969	

salary	
 50,000.00	

getName() setName(String n) …	

toString()	

equals(Object) toString() 	

Employee	

c	
 a0	

Which method toString()
is called?	

Overriding rule, or���
bottom-up rule:���
To find out which is used,
start at the bottom of the
class and search upward
until a matching one is
found.	

Terminology. Employee inherits methods and fields from
Object. Employee overrides function toString.	

Sec. 4.1,
page 142	

This class is on
page 105 of the
text.	

6	

Purpose of super and this	

this refers to the name of the object in which it appears.	

super is similar but refers only to components in the partitions above.	

/** = String representation of this
Employee */	

public String toString() {	

 return this.getName() + ", year ” +���
 getStart() + ", salary ” + salary;	

} 	

ok, but unnecessary	

/** = toString value from superclass */	

public String toStringUp() {	

 return super.toString();	

}	

necessary 	

Sec. 4.1, pages
144-145	

a0	

Object	

name	
 “Gries”	

start	
 1969	

salary	
 50,000.00	

getName() ���
setName(String n) {…}	

toString()	

toStringUp() { …}	

equals(Object) ���
 toString() 	

Employee	

2	

7	

A second constructor in Employee	

Provide flexibility, ease of use, to user	

/** Constructor: a person with name n, year hired d, salary s */	

public Employee(String n, int d, double s) {	

 name= n; start= d; salary= s;���
 }	

/** Constructor: a person with name n, year hired d, salary 50,000 */	

 public Employee(String n, int d) {	

 name= n; start= d; salary= 50000; 	

}	

First constructor	

Second constructor;
salary is always 50,000	

/** Constructor: a person with name n, year hired d, salary 50,000 */	

 public Employee(String n, int d) {	

 this(n, d, 50000); ���
}	

 Another version of second
constructor; calls first constructor	

Here, this refers to the other constructor.
You HAVE to do it this way 	

Sec. 3.1.3,
page 110	

8	

a0	

Object	

name	
 “Gries”	
 start	
 1969	

salary	

10,000	

Employee(String, int)	

toString() getCompensation()	

toString() …	

Employee	

Executive	
bonus	

Executive(String, int, double) 	

getBonus() getCompensation()	

toString() 	

50,000	

Calling a superclass
constructor from the
subclass constructor	

public class Executive extends Employee {	

 private double bonus; 	

 /** Constructor: name n, year hired	

 d, salary 50,000, bonus b */	

 public Executive(String n, int d, double b) {	

 super(n, d);	

 bonus= b;	

 }	

}	

The first (and only the first) statement in
a constructor has to be a call on another
constructor. If you don’t put one in, then
this one is automatically used:	

	
super();	

Principle: Fill in superclass fields first.	

Sec. 4.1.3, page 147	

9	

a0	

Object	

name	
 “Gries”	
 start	
 1969	

salary	

10,000	

Employee(String, int)	

toString() getCompensation()	

toString() …	

Employee	

Executive	
bonus	

Executive(String, int, double) 	

getBonus() getCompensation()	

toString() 	

50,000	

public class Executive extends Employee {	

 public Executive(String n, int d, double b) {	

 bonus= b;	

 }	

}	

First statement in constructor:
constructor call. If none, Java
inserts:	

	
super();	

Is above program okay?	

A. Compiles with no change	

B. Compiles with super() inserted	

C. Doesn’t compile 	

One constructor in Employee	

10	

Anglicizing an Integer	

anglicize(“1”) is “one”"
anglicize(“15”) is “fifteen”"
anglicize(“123”) is “one hundred twenty three”"
anglicize(“10570”) is “ten thousand five hundred seventy”"
/** = the anglicization of n.	

 Precondition: 0 < n < 1,000,000 */	

public static String anglicize(int n) {	

}	

11	

Principles and strategies	

Develop algorithm step by step, using principles and strategies
embodied in “stepwise refinement” or “top-down programming.
READ Sec. 2.5 and Plive p. 2-5.	

• Take small steps. Do a little at a time	

• Refine. Replace an English statement (what to do) by a
sequence of statements to do it (how to do it).	

• Refine. Introduce a local variable —but only with a reason	

• Compile often	

• Intersperse programming and testing	

• Write method specifications —before writing the bodies	

• Separate your concerns: focus on one issue at a time	

12	

Principles and strategies	

• Mañana Principle.	

During programming, you may see the need for a new method.
A good way to proceed in many cases is to: 	

1. Write the specification of the method.	

2. Write just enough of the body so that the program can be
compiled and so that the method body does something
reasonable, but no the complete task. So you put off completing
this method until another time —mañana (tomorrow) —but you
have a good spec for it.	

3. Return to what you were doing and continue developing at
that place, presumably writing a call on the method that was just
“stubbed in”, as we say. 	

3	

13	

What numbers should we look at first?	

A: Small numbers	

B: Numbers >= 100	

C: Numbers >= 1000	

14	

What numbers should we look at first?	

A: 0..9	

B: 1..9	

E: 1..10	

C: 0..19	

D: 1..19	

15	

How many test cases do we need to test ang19?	

A: 1	

B: 2	

E: 5	

C: 10	

D: 19	

