
1	

1	

CS1110 21 Sept 2010	

Inside-out rule; use of this, super	

Developing methods (using Strings).	

Read sec. 2.5, stepwise refinement 	

Listen to Plive, 2.5.1–2.5.4.	

Reading for next lecture:
the same	

Today: Pick up: A3	

Today’s slides	

You can do A3 in groups of 2,���
BUT GROUP EARLY ON

CMS	

Rsrecah on spleilng	

Aoccdrnig to a rscheearch at Cmabirgde Uinervtisy, it deosn't
mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is that the frsit and lsat ltteer be at the rghit
pclae. The rset can be a total mses and you can sitll raed it
wouthit porbelm.Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.	

Office hours
are being held	

2	

A1���
210 out of 211 groups
graded at least once���

79 out of 210 are done!���

Please respond to your
feedback within 24 hours
if you can. We want to
finish up A1 by the
weekend.���

Make sure you RRequest
a RRegrade when you
RResubmit.	

3	

A3: Adding functionality to A1	

Due Wednesday, 29 September	

• Keeping class invariant true	

• Use already-written functions 	

• Boolean expressions	

• Use of null and testing for it	

• Use of static variables	

Form groups on the CMS early,
well before you submit.	

A3: graded in conventional way.
Submit once and get a grade.	

4	

The inside-out rule (see p. 83)	

Code in a construct can reference any of the names declared or defined
in that construct, as well as names that appear in enclosing constructs.
(If a name is declared twice, the closer one prevails.)	

File drawer for class Person	

Person	

a0	

name	

getNameAndPop() {	

 return name + PersonPop;���
}	

Person	

a1	

name	

getNameAndPop() {	

 return name + PersonPop;���
}	

PersonPop	

Remember frame boxes and figuring out variable references?	

5	

Method parameters participate in the inside-out rule: remember the frame.	

setName(String n) {	

 name= n;	

}	

Person	

a0	

name	

setName(String name) {	

 name= name;	

}	

Person	

a1	

name	

Parameter n would be
found in the frame for the
method call.	

Parameter name “blocks”
the reference to the	

 field name.	

Doesn’t work right	

6	

A solution: this and super	

Within an object, this evaluates to the name of the object. 	

File drawer for class Person	

PersonPop	

setName(String name) {	

 this.name= name;	

}	

Person	

a0	

name	

setName(String name) {	

 this.name= name;	

}	

Person	

a1	

name	

In folder a0, ���
this refers to a0	

In folder a1, ���
this refers to a1	

2	

7	

About super	

Within a subclass object, super refers to the partition above the one
that contains super.	

toString() { … }	

otherMethod { …	

 … super.toString() …	

}	

Object	

a1	

Elephant	

method equals()	

method toString()	
 Because of the
keyword super, this
calls toString in the
Object partition.	

8	

Strings are (important) objects that come with useful methods.	

String s= "abc d";	

 abc d
01234	

Note the “index (number)
from 0” scheme:	

s	
 as	

as	

length()	

charAt(int)	

substring(int)	

substring(int, int)	

indexOf(String)	

lastIndexOf(String)	

…	

String	

To find specs of methods in String:	

1. Visit course website	

2. Click Links	

3. Click Specs for version 1.6	

4. Click String in lower left pane	

s.length() is 5	

s.charAt(2) is ‘c’	

s.substring(2) is “c d”	

s.substring(1,3) is “bc”	

9	
9	

Strings are (important) objects that come with useful methods.	

String s= "abc d";	

 abc d
01234	

Text pp. 175–181 discusses Strings	

Look in CD ProgramLive	

Look at API specs for String	

s.length() is 5 (number of chars)	

s.charAt(2) is 'c' (char at index 2)	

s.substring(2,4) is "c " (NOT "c d")	

s.substring(2) is "c d"	

" bcd ".trim() is "bcd" (trim
beginning and ending blanks)	

s.indexOf(s1) –index or position of
first occurrence of s1 in s (-1 if none)	

Note the “index (number)
from 0” scheme:	

10	
10	

Strings are objects!!!!!!!!!	

What is the value of	

 s == t	

DO NOT USE == TO TEST ���
STRING EQUALITY!	

s == t tests whether s and t contain the name of the same object, not
whether the objects contain the same string.	

Use s.equals(t)	

s	
 a1	

a1	

“lee”	

… equals(Object)	

String	

t	
 a2	

a2	

“lee”	

… equals(Object)	

String	

11	

Principles and strategies embodied in stepwise refinement	

Develop algorithm step by step, using principles and strategies
embodied in “stepwise refinement” or “top-down programming.
READ Sec. 2.5 and Plive p. 2-5.	

• Take small steps. Do a little at a time	

• Refine. Replace an English statement (what to do) by a

sequence of statements to do it (how to do it).	

• Refine. Introduce a local variable —but only with a reason	

• Compile often	

• Intersperse programming and testing	

• Write a method specification —before writing its body	

• Separate concerns: focus on one issue at a time	

• Mañana principle: next slide	

12	

Principles and strategies for reformatting strings	

When dealing with String, always try to use existing methods!!	

Ones you have written or those that are in class String	

• Pick out pieces from the input String	

• Build the new String from the Pieces 	

3	

13	

Principles and strategies	

• Mañana Principle.	

During programming, you may see the need for a new method.
A good way to proceed in many cases is to: 	

1. Write the specification of the method.	

2. Write just enough of the body so that the program can be
compiled and so that the method body does something
reasonable, but no the complete task. So you put off completing
this method until another time —mañana (tomorrow) —but you
have a good spec for it.	

3. Return to what you were doing and continue developing at
that place, presumably writing a call on the method that was just
“stubbed in”, as we say. 	

