
1	

1	

CS1110 Thursday, 16 February 2010	

Discussion of Methods: Executing method ���
calls. If-statements. The return statement in a���
function. Local variables. 	

For this and next lecture: Read chapter 2,���
but NOT 2.3.8!!!!���
Do the self-review exercises in 2.3.4	

Congrats!! You now know the basics of OO (object-orientation).	

Sit next to someone.
Today, we do some

work in pairs. 	

Get out a blank
sheet of paper.	

Get out Iclicker.	

Conflict with Thursday Oct. 7th 7:30-9pm prelim? Email
mwitlox@cs.cornell.edu with netid, other course name,
other course instructor's email address BY NEXT
THURSDAY.	

The last slide: local variables –variables
declared within a method body. No time to
discuss them. You are responsible for local
variables. Read pp. 76-78 (sec. 2.3.7).	

2	

CS1110 Thursday, 16 February 2010	

A2 will take you 10-15 minutes.	

Due on Thursday, in class.	

Do it this weekend, not two
minutes before class on
Thursday	

Sit next to someone.
Today, we do some

work in pairs. 	

Get out a blank
sheet of paper.	

Get out Iclicker.	

3	

/** An instance keeps info about a book chapter */	

public class Chapter {	

 // class invariant: meanings of fields and constraints on them	

 private int numb; // the chapter number, in range 0..100	

 private String title; // chapter title	

 private Chapter prev; // instance for the previous chapter	

 … // (null if no previous chapter) 	

}	
 …	

a0	

Chapter	

numb	
 2	

title	
 “objects”	

prev	
 a5	

 …	

a5	

Chapter	

numb	
 1	

title	
 “intro”	

prev	
 null	

c	
 a0	

4	

/** An instance keeps info about a book chapter */	

public class Chapter {	

 // class invariant: meanings of fields and constraints on them	

 private int numb; // the chapter number, in range 0..100	

 private String title; // chapter title	

 private Chapter prev; // instance for the previous chapter	

 … // (null if no previous chapter) 	

}	

 /** Change the previous chapter title to t.	

 Precondition: previous chapter not null. */	

 public void changePrevTitle���
 (String t) { 	

 prev.title= t;	

 }	

A. It will work	

B. It won’t compile	

 --it has a syntax error	

C. It will compile	

 --but it won’t run right 	

5	

/** Constructor: a chapter with title t, ���
 number n, and previous chapter null.*/ 	

public Chapter(String t, int n) {	

 title= t;	

 numb= n;	

 previous= null;	

}	

Within the body
(between { }) is the

sequence of
statements to

execute when the
method is called.���

 (“Follow the
recipe”.)	

But how is a method call executed?	

How do parameters and arguments work? 	

parameters:
t and n	

We write programs in order to do things.	

Methods are the key “doers”. 	

declaration of
parameter t	

Memorize: a parameter is a variable that is declared
within the parentheses of a method header.	

6	

The frame (the box) for a method call	

Remember: Every method is in a folder (object)���
 or in a file-drawer.	

method name: instruction counter	
 scope box	

local variables (don’t deal with these now)	

parameters	

scope box contains
the name of entity
that contains the
method —a file
drawer or object.	

number of the statement of
method body to execute next.
Start with 1. Helps you keep
track of what statement to
execute next.	

Draw the
parameters
as variables.	

The scope box contains:	

For an instance method, name of object in which it resides	

For a static method, name of class in which it is defined	

Draw template on 	

a piece of paper	

2	

7	

a0	

Account	

 amt	

setAmt(int newAmt) {amt= newAmt;}	

getAmt() {…}	

15	

To execute the call x.setAmt(50);	

x a0	
Account	

1. Draw a frame for the call. 	

2. Assign the value of the argument
to the parameter (in the frame).	

3. Execute the method body. (Look
for variables in the frame; if not
there, look in the place given by
the scope box.)	

4. Erase the frame for the call.	

public void setAmt(int newAmt) {	

 amt= newAmt;	

}	

8	
8	

a0	

Account	

 amt	

setAmt(int newAmt)	

getAmt()	

15	

To execute the call x.setAmt(50);	

x a0	
Account	

1. Draw a frame for the call. 	

2. Assign the values of arguments
to parameters (in the frame).	

3. Execute the method body. (Look
for variables in the frame; if not
there, look in the place given by
the scope box.)	

4. Erase the frame for the call.	

a0	
setAmt: 1	

newAmt	
 50	

xx 50	

ERASE WHOLE FRAME	

public void setAmt(int newAmt) {	

 amt= newAmt;	

}	

9	

a1	

Account	

 amt	

setAmt(int newAmt) {…}	

getAmt() {return amt;}	

25	

To execute the call cash= y.getAmt();	

y a1	
Account	

1. Draw frame for call. 	

2. Assign value of argument to
parameters (in the frame).	

3. Execute method body. (Look for
variables in the frame; if not there, look
in the place given by the scope box.)	

4. Erase the frame for call; use value of return-
statement expression as function-call value.	

cash 	

int	

 a1	

public int getAmt() {���
 return amt;���
}	

10	
10	

a1	

Account	

 amt	

setAmt(int newAmt)	

getAmt()	

25	

To execute the call cash= y.getAmt();	

y a1	
Account	

1. Draw frame for call. 	

2. Assign value of args to pars ���
 (in frame).	

3. Execute the method body. 	

4. Erase frame for call; use value	

of return-statement expression as	

function-call value.	

cash 	

int	

a1	
getAmt: 1	

 a1	

25	

ERASE THIS WHOLE FRAME	

25	

public int getAmt() {���
 return amt;���
}	

11	

new Chapter(“Intro”, 1)	

a1	

Chapter	

Chapter(String t, int n) { … }	

a8	

null	
title	

null	
previous	

0	
number	

Note local variable d declared
within method body. It should
be drawn in frame for call.	

1. Draw a frame for the call. 	

2. Assign arg values to pars.	

3. Execute the method body. 	

4. Erase the frame for the call.	

Chapter(String t, int n) {	

 String d;	

 1: d= t;	

 2: title= d;	

 3: number= n;	

 4: previous= null;	

}	

12	
12	

new Chapter(“Intro”, 1)	

a1	

Chapter	

Chapter(…) 	

a8	

null	
title	

null	
previous	

 0	
number	

Note local variable d declared
within method body. It should
be drawn in frame for call.	

1. Draw a frame for the call. 	

2. Assign arg values to pars.	

3. Execute the method body. 	

4. Erase the frame for the call.	

a8	
Chapter: 1	

t	

n	
 d	

“Intro”	

1	

xxxx “Intro”	

 xx 1	

xxxx null	

“Intro”	

ERASE THIS WHOLE FRAME	

Chapter(String t, int n) {	

 1: String d= t;	

 2: title= d;	

 3: number= n;	

 4: previous= null;	

}	

x 2 	

3	

13	

/* Put smaller of x, y in z */	

if (x < y) {	

 z= x;	

}	

else {	

 z= y; ���
}	

if statement	

/* swap x, y to put larger	

 in y */	

if (x > y) {	

 int t;���
 t= x;	

 x= y;	

 y= t;	

}	

Syntax: ���
if (<boolean expression>)���
 <statement>	

Execution: if the <boolean
expression> is true, then
execute the <statement>	

if-else statement	

Syntax: ���
if (<boolean expression>)���
 <statement1>���
else <statement2>	

Execution: if the boolean
expression is true, then execute
<statement1>;���
otherwise, execute <statement2>	

14	

Idiom: if statements and multiple return staements	

/** = smallest of b, c, d */	

public static int smallest(int b, int, c, int d) {	

}	

Execution of statement	

 return <expr> ;	

terminates execution of
the procedure body and

yields the value of
<expr> as result of

function call	

Execution of function body must end by executing a return statement.	

return d;	

if (b <= c && b <= d) {	

 return b;	

}	

Assertion	

// { The smallest is either c or d } 	

if (c <= d) {	

 return c;	

}	

// { the smallest is d }	

15	

Syntax of procedure/function/constructor and calls	

public <result type> <name> (<parameter declarations>) { … }	

public void <name> (<parameter declarations>) { … }	

public <class-name> (<parameter declarations>) { … }	

function	

procedure	

constructor	

<name> (<arguments>)	

<name> (<arguments>) ;	

new <class-name> (<arguments>)	

function call	

procedure call	

constructor call	

Exec. of a function body must terminate by executing a statement	

“return <exp> ;”, where the <exp> has the <result type>.	

Exec. of a proc body may terminate by executing statement “return ;”	

Exec. of a constructor body initializes fields of a new object in order to
make the class invariant true.	

<arguments>: <expression>, <expression>, …, <expression>	

16	

Scope of local variable is the places where it can be used. The scope is
the sequence of statements following it within the containing “block”.	

/** = the max of x and y */	

public static int max(int x, int y) {	

 // Swap x and y to put the max in x	

 if (x < y) {	

 int temp;	

 temp= x;	

 x= y;	

 y= temp;	

 }	

 return x;	

 }	

scope of temp	

You can’t use temp down here	

This is an error.	

