
1

Developing algorithms on arrays
We may specify an algorithm that deals with arrays by giving

its precondition and postcondition as pictures.

We then draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition, since the
invariant is true at the beginning and at the end.

Four loopy questions —memorize them:
1.  How does loop start (how to make the invariant true)?
2.  When does it stop (when is the postcondition true)?
3.  How does repetend make progress toward termination?
4.  How does repetend keep the invariant true?

2

Invariant as picture: Combining pre- and post-condition

Finding the minimum of an array. Given array b satisfying
precondition P, store a value in x to truthify postcondition Q:

 ? and n >= 0
0 n

P: b

 x is the min of this segment
0 n

Q: b

 x is the min of this segment ?
0 i n

inv: b

3

The invariant as picture: Combining pre- and post-condition

Put negative values before nonnegative ones. given precondition P:

 ?
0 n

P: b

 < 0 >= 0
0 k n

Q: b

Swap the values of b[0..n-1] and store in k to truthify Q:

 < 0 ? >= 0
0 k t n

inv: b

4

The invariant as picture: Combining pre- and post-condition
Dutch national flag. Swap values of 0..n-1 to put the reds first, then
the whites, then the blues. That is, given precondition P, swap value of
b[0.n] to truthify postcondition Q:

 ?
0 n

P: b

 reds whites blues
0 n

Q: b

 reds whites ? blues
0 h k t n

Q: b

5

Partition algorithm: Given an array b[h..k] with some value x in b[h]:

 x ?
h k

P: b

 <= x x >= x
h j k

Q: b

x is called the pivot value.
x is not a program variable; x just denotes the value initially in b[h].

Swap elements of b[h..k] and store in j to truthify P:

 <= x x ? >= x
h j t k

inv: b

6

Linear search (for value known to be in array)

 v is in here
h k

precondition P: b

postcondition Q: b

Vague spec.: Find first occurrence of v in b[h..k-1], which is known to be there.
Better spec.: Store an integer in i to truthify postcondition Q:

 Q: 1. v is not in b[h..i-1]
 2. v = b[i]

 v not here v ?
h i k

inv: b v not here v is in here
h i k

7

 x not here

 i
h k

Linear search

 v is in here
h k

P: b

 x not here x ?
h i k

Vague spec.: Find first occurrence of v in b[h..k-1].
Better spec.: Store an integer in i to truthify postcondition Q:

 Q: 1. v is not in b[h..i-1]
 2. i = k OR v = b[k]

Q: b

 b

OR

 x not here ?
h i k

inv: b

8

Binary search: Vague spec: Look for v in sorted array segment b[h..k].
 Better spec:
Precondition P: b[h..k] is sorted (in ascending order).

Store in i to truthify:
Postcondition Q: b[h..i] <= v and v < b[i+1..k]

Below, the array is in non-descending order:

 ?
h k

P: b

 <= v > v
h i k

Q: b

Called binary search
because each iteration
of the loop cuts the
array segment still to
be processed in half

 <= v ? > v
h i t k

inv: b

9

 ?
0 n

pre: b

 sorted
0 n

post: b

 sorted ?
0 i n

inv: b

Insertion sort
Swap the values in b[0..n-1] so that
the segment is sorted (in ascending order)

10

 ?
0 n

pre: b

 sorted
0 n

post: b

 sorted, <= ?, >=
0 i n

inv: b

Selection sort
Swap the values in b[0..n-1] so that
the segment is sorted (in ascending order)

