
CS100J About the Final Thursday, 8 May 9:00–11:30 am Barton West

Office hours are canceled for the week after classes (be-
ginning 5 May). However, if you want to see a TA, they
will be happy to make an appointment with you. To
make an appointment with Gries, call Cindy Pakkala at
255-8240.

Review sessions, week of 5 May, all in Phillips 101

The order of the topics may change somewhat, but we
will put the final schedule on the course website.

Day Time Instructor Topic
Mon 1PM Wang

Executing sequences of
statements that involve
creating new objects

Mon 2PM El Hawary Writing constructors in
classes and subclasses

Mon 3PM Worthing-
ton

Casting, apparent and
real classes

Tue 1PM Gries Developing loops from
invariants

Tue 2PM Cheng Interfaces
Tue 3PM Ramanujan Specific classes: e.g.

Integer, Character, Vec-
tor, String

Wed 1PM Levitan Exception handling;
GUIs

Wed 2PM Rong Executing method calls;
frame for a call

Wed 3PM Grayson Recursion

The final is cumulative, covering all topics in the course
except as described below. So, you have to know every-
thing that was covered in the three prelims. See the
handouts on the three prelims (on the course web page).

You do not have to study the following topics: ab-
stract classes, reading a file or the keyboard, applica-
tions, applets.

You do have to know about:

1. Several algorithms. You know this already, but we
repeat it for emphasis. One of the following algorithms
can be asked for. We may simply write “show binary
search”, or “Show us the partition algorithm”, and you
have to give the precondition, postcondition, and loop
invariant and then develop the algorithm. We expect
that: the loop with initialization is developed from the
invariant; a loop that has nothing to do with the invari-
ant gets little credit. Everyone should get full credit on
this question because it is simply a matter of practicing
developing known algorithms from their specs.

Linear search, Binary search, Dutch National Flag, Par-
tition algorithm, Selection sort, Insertion sort.

2. Developing an algorithm: stepwise refinement. We
have used stepwise refinement in class many times, at-

tempting to solve a little bit of a problem at a time. Read
Sec. 2.5 on p. 82, and you might also study Sec. 9.2, p.
304, which discusses the development of several prob-
lems that deal with arrays.

3. Multi-dimensional arrays. You have to know about
rectangular arrays. This includes knowing how to access
the number of columns in a row and knowing how to
create a rectangular array. You have to know how arrays
are stored as objects (folders) and to be able to draw an
array.

You should also know how multidimensional arrays are
handled and how this lets us have ragged arrays.

4. Exception handling. We will not expect you to write
a complete program that deal with exception handling.
However, you should know the basics: What an Excep-
tion is, how one creates an object that can be thrown,
the try statement, the throw-statement, what happens
when an object is thrown —where is it thrown to and
how can it be caught, etc. Prelim 3 contained a question
on exception handling, and you can expect a question on
the final at the same level of understanding. This is ex-
plained in the chapter on Exception Handling.

5. Interfaces. You should know the basics of interfaces
—how they are defined/declared; what their purpose is;
how one indicates that a class implements an interface
and what that means. You are responsible for Sections
12.1 and 12.2, but not 12.3 and 12.4.

6. Placement of components in a GUI. The default
layout managers for a JFrame, a JPanel, and a Box
and how that manager arranges components in it. What
these basic components are: JButton, JLabel,
JTextField, JTextArea. Be able to understand
programs that place components in a GUI. You do not
have to write code to “listen” to an event, but you
should understand how interfaces (see point 5) are used
in doing this and you should be able to understand code
that does the listening.

