This handout outlines (through examples) the CS 100J "subset" of MATLAB. The MATLAB help facility should be used for details. The book *Getting Started With Matlab* by Rudra Pratap is an excellent and inexpensive reference.

One-dimensional arrays are called *vectors* and two-dimensional arrays are called *matrices*. Scalars are 1-by-1 matrices. The memory manager takes care of the necessary storage allocations. There are no declarations. The entries in a Matlab array may be real or complex.

When in the *command window*, you are prompted to enter commands with a double arrow ">>"

Setting Up Arrays	Use help to learn more about linspace, logspace, ones, zeros, rand, and randn.
>> x = [10 20 30] x = 10 20 30	Square brackets delimit arrays. Row vector entries are separated by blanks.
>> x = [10; 20; 30] x = 10 20 30	For column vector, entries are separated by semicolons.
>> x = [10 20 30;40 50 60] x = 10 20 30 40 50 60	Matrix rows are separated by semicolons.
<pre>>> x = linspace(1,3,5) x = 1 1.5 2.0 2.5 3.0</pre>	<pre>linspace(a,b,n): create a length-n row vector of equally spaced values from a to b inclusive.</pre>
>> u = [1 2]; v = [3 4]; >> x = [u v u] x = 1 2 3 4 1 2	Row vectors can be catenated to build longer row vectors. Blanks in between the vectors entries.
>> x = [u;v;u] x = 1 2 3 4 1 2	Column vectors can be "stacked" to build longer column vectors. Semicolons in between the vector entries.
<pre>>> x = rand(2,3) x = .293029 .343293 .292930 .411275</pre>	rand (n, m) : generate an n-row, m-column matrix of random numbers, each selected from the uniform(0,1) distribution.

Some Built-In Functions	Use help to learn more about length, size, max, min, sum, cumsum, prod, cumprod, sort and median Elementary functions like abs, sqrt, exp, log, log10, sin, cos, tan, asin, acos, atan, floor, fix, ceil, round, rem, real, and imag accept array arguments and return the corresponding array of function evaluations. Try help elfun for a synopsis of Matlab's elementary functions.
>> x = [30 10 80 20 60];	The length of a vector equals the number of components.
<pre>>> n = length(x) n =</pre>	Use max to find the largest (i.e. most positive) entry in a vector. Two values are returned. The size of the largest value and the index that identifies its location. Works for row or column vectors.
>> z = sort(x) z = 10 20 30 60 80	Sort the entries in a vector from smallest to largest (i.e. from most negative to most positive.)
>> x = [1 2 3; 4 5 6] x = 1 2 3 4 5 6	The size of a two-dimensional array is defined by the number of its rows and the number of its columns.
<pre>>> [m n] = size(x) m =</pre>	

Array-Level Operations	Array operations for column vectors and matrices are similarly defined. Learn more about array-level operations by typing help ops.
<pre>>> x = [5 8 -2]; >> y = [1 2 3]; >> z = x+y z = 6 10 1</pre>	You can add vectors as long as they have the same length and orientation.
>> z = 3*x z = 15 24 -6	This is how you multiply every entry in an array by the same scalar.
>> z = x+7 z = 12 15 5	This is a shortcut for $z = x + [7 \ 7 \ 7]$.
>> z = x.*y z = 15 16 -6	Componentwise multiplication. Again, the vectors involved must have the same length and orientation.
>> z = x./y z = 5 466667	Componentwise division and exponentiation.
>> z = x.^y z = 5 64 -8	
>> z = x.^2 z = 25 64 4	A shortcut for $z = x \cdot [2 \ 2 \ 2]$.
>> z = [1 2 3]' z = 1 2 3	You can change the orientation of an array this way. Row- vectors become column-vectors and vice versa.

Numerical Input/Output	Use help to learn more about format, disp, sprintf, input, and num2str.
>> x = pi x = 3.1416	The effect of a command is displayed if there is no semicolon after the command.
<pre>>> format long >> x = pi x = 3.14159265358979 x= input(`Enter x:');</pre>	The format command is used to establish the current display style. The short format (5 decimal places) is in force when Matlab is first entered. The long format displays full working precision. Scientific notation is available via the short e and long e formats.
_	To solicit scalar input with a prompt, use input.
<pre>y= sqrt(x); s= sprintf(`sqrt = %10.6f',y); disp(s)</pre>	Disp displays strings and sprintf can be used to produce formatted output strings. %10.6f specifies a decimal format with 6 decimal places and total space allocation of 10 characters. Use e format for scientific notation and d for integers.

As You Learn More Mathematics...

Matlab supports matrix-vector multiplication, linear equation solving, data fitting, differential equation solving, nonlinear equation solving, numerical integration, and many other important mathematical activities.

I I I I I I I I I I I I I I I I I I I	Use help to learn more about script, echo, type, cd, dir, and path.
	dir, and path.

If a sequence of Matlab commands is stored in a file *name.m*, that sequence is invoked whenever the name of the file is entered. Thus, if the file Expo.m has the commands

x = input(`Enter the exponent x:')y = 2^x

then by typing $E \times po$ you will be prompted for a value of x and 2^x is assigned to y and displayed.

Function	Files
----------	-------

New functions may be added to Matlab's vocabulary if they are expressed in terms of other existing functions. The commands that define the new function must be put in a separate file. The name of file must be the name of the function with a ".m" suffix. The first line in the file must be a valid function line that specifies the input and output parameters. Consider a file called stat.m with the following lines:

```
function [mean,stdev] = stat(x)
% Yields the mean and standard deviation of a vector x
    n= length(x);
    mean= sum(x)/n;
    stdev= sqrt(sum(x-mean).^2)/n);
```

This defines a new function called "stat" that calculates the mean and standard deviation of a vector. The variables within the body of the function are all local variables. Comments in Matlab begin with a "%".

Control Structures	Try help lang for a review of Matlab as a programming language including the for, while, and if constructs. The usual symbols are used for booleans: ">" (greater than), ">=" (at least), "==" (equal), "<=" (at most), "<" (less than), and "~=" (not equal). The "and", "or", "not" operations are written as "&", " ", "~". See also any and all.
<pre>d= sqrt(b^2 -4*a*c; if d>0 r1= (-b+d)/(2*a); r2= (-b-d)/(2*a); else disp(`Complex roots') end</pre>	A simple if-else construct. Don't forget the end keyword.
<pre>if (x>y) & (x>z) maxval= x; elseif y>z maxval= y; else maxval= z; end</pre>	Parenthesis are advised for boolean expressions.
if (x < 4) (x > 5) disp(`x not in [4,5]')	The "or" operation.

end	
<pre>for k=i:j y= k^2; disp(sprintf(`%3d %3d',k,y)) end</pre>	Print k and k ² for k = i,i+1,,j. If i > j, nothing is printed.
<pre>k=i while (k<=j) y= k^2; disp(sprintf(`%3d %3d',k,y)) k= k+1; end</pre>	Equivalent to the above for-loop.

Example 1: A Simple Plot	Use help to learn more about plot, xlabel, ylabel, and title. See also semilogx, semilogy, loglog, hist, bar, contour, and color. More general overviews of Matlab graphics can be obtained by using help to read about plotxy, plotxyz, and graphics.
<pre>x= linspace(0,10,200); y= sin(x); plot(x,y) xlabel(`x') ylabel(`y= sin(x)') title(`The Sine Function is Periodic')</pre>	The Sine Function is Periodic

Example 2: Plotting More than One Function	Use help to learn more about plot.
<pre>x= linspace(0,10,200); y= sin(x); z= cos(x); plot(x,y,x,z,'') xlabel('x') title('The Sine and Cosine Functions')</pre>	The Sine and Cosine Functions

Example 3: Controlling the Axes	Use help to learn more about axis.
<pre>x= linspace(-pi/2,pi/2,200); y= tan(x); plot(x,y,x+pi,y,'-',x+2* pi,y,'-') axis([-pi/2,2.5*pi,-5,5]) xlabel('x') ylabel('y = tan(x)') title('The Function tan(x)')</pre>	The Function tan(x)

Example 4: Superpositioning	Use help to learn more about axis and hold.
<pre>a= linspace(0,2*pi); plot(cos(a),sin(a)) axis('equal','off') a0= linspace(0,2*pi,8); x0= cos(a0); y0= sin(a0); hold on for k=1:8 plot([0 x0(k)],[0,y0(k)],</pre>	

Example 5: Subplotting	Use help to learn more about subplot, axis, and text.
<pre>a= linspace(0,2*pi,200); c= cos(a); s= sin(a); for k=1:4 subplot(2,2,k) plot(4*c,k*s) axis('equal') axis([-5 5 -5 5]) text(-1,0,sprintf('k= %1d',k)) end</pre>	