
1

1
For more info: http://www.mailmsg.com/history.htm

CS100J 7 February 2006
In 1968, the Defense Department hired Bolt Beranek and Newman (BBN)
of Boston to help develop the ARPANET, which later turned into the
internet. In 1971, Ray Tomlinson of BBN was given the task of figuring out
how to send files from one person to another. He created email with file
attachments. He selected @ as the separator between an email name and
location. Names for @ in other languages:

Italian: chiocciolina = little snail
French: petit escargot = little snail
German: klammeraffe = spider monkey
Dutch: api = short for apestaart

(monkey's tail)
Finnish: miau = cat tail
Israeli: strudel = a pastry
Danish: snabel = an "A" with a trunk
Spanish: un arroba = a unit of about 25 pounds
Norwegian: kanel-bolle = spiral-shaped cinnamon cake

TODAY:
• Note on method specs

• Static variables.
 Sec. 1.5 (p. 47)

• Testing and the use of
 Junit testing.
 Sec. 14.1.1 (p. 385-388)

2

/** Each instance describes a chapter in a book * */
public class Chapter {
 private String title; // The title of the chapter
 private int number; // The number of chapter
 private Chapter previous; // previous chapter (null if none)

 /** Constructor: an instance with title t, chap n, previous chap c */
 public Chapter(String t, int n, Chapter c)
 { title= t; number= n; previous= c; }

 /** = title of this chapter */
 public String getTitle() { return title; }

 /** = number of this chapter */
 public int getNumber() { return number; }

 /** = (name of) the previous chapter (null if none) */
 public Chapter getPrevious() { return previous; }
}

Today, we will use
a class Chapter:

an instance of
which describes a

book. Here, we
have a constructor

and three getter
methods

Download class
from course

web page.

3

About method specifications
A precondition is a restriction that a call of a method must satisfy. Our
convention is that the method need not check that the precondition holds.

/** = the chapter number of Chapter c.
 Precondition: c should not be null */
public boolean chapterNumber(Chapter c) {

return c.number;
}

/** = “c is not null and has chapter number 0” */
public static boolean isZero(Chapter c) {

return c != null && c.number == 0;
}

Up to caller to make sure
c is not null; No need in
this class to check in
method body.

The fact that c is not
null is not given as a
precondition but as
something that the
method body should
check.

4

A static field does not appear in each folder.
It appears in the file drawer, by itself, on a piece of paper.

There is only ONE copy of it.

public class Chapter {
 private String title; // title of chapter
 private static int numberChaps= 0; // no. of folders created
}

Reference the static variable using Chapter.numberChaps

a0

Chaptertitle “peace”

a1

Chaptertitle “truth”

numberChaps 2
File drawer for class Chapter

5

A static field does not appear in each folder.
It appears in the file drawer, by itself, on a piece of paper.

There is only ONE copy of it.

public class Chapter {
 private int title; // title of chapter
 private static int numberChaps= 0; // no.of folders created
}

a0

Chaptertitle “peace”

a1

Chaptertitle “truth”

numberChaps 2
File drawer for class Chapter

Use a static variable when you want to maintain
information about all (or some) folders.

6

Make a method static when it does not refer to any
of the fields or methods of the folder.

public class Chapter {
 private int number; // Number of chapter
 private static int numberOfChapters= 0;

 /** = “This chapter has a lower chapter number than Chapter c”.
 Precondition: c is not null. */
 public boolean isLowerThan(Chapter c) {

return number < c.number;
 }

}

/** = “b’s chapter number is lower than c’s chapter number”.
 Precondition: b and c are not null. */
public static boolean isLower(Chapter b, Chapter c) {
 return b.number < c.number;
}

2

7

CS100J 13 September 2005. Testing.

1. Testing --using Junit. Pages 385-388 (through Sec. 14.1.1).

Bug: Error in a program.

Testing: Process of analyzing, running program, looking for bugs.

Test case: A set of input values, together with the expected output.

Debugging: Process of finding a bug and removing it.

Get in the habit of writing test cases for a method from the
specification of the method even before you write the method.

A feature called Junit in DrJava helps us develop test cases
and use them. You have to use this feature in assignment A2.

8

1. c1= new Chapter(“one”, 1, null);
Title should be: “one”; chap. no.: 1; previous: null.

2. c2= new Chapter(“two”, 2, c1);
Title should be: “two”; chap. no.: 2; previous: c1.

Here are two test cases

/** = a String that consists of the first letter of each word in s.
E.g. for s = “Juris Hartmanis”, the answer is “JH”.
Precondition: s consists of a name in the form “first last” or
“first middle last”, with one or more blanks between each pair
of names. There may be blanks at the beginning and end.
public String initialsOf(String s) {

}

9

1. c1= new Chapter(“one”, 1, null);
Title should be: “one”; chap. no.: 1; previous: null.

2. c2= new Chapter(“two”, 2, c);
Title should be: “two”; chap. no.: 2; previous: c1.

To create a framework for testing in DrJava, select menu File
item new Junit test case…. At the prompt, put in the class
name ChapterTester. This creates a new class with that name.
Immediately save it —in the same directory as class Chapter.

The class imports junit.framework.TestCase, which provides
some methods for testing.

We need a way to run these test cases, to see whether the
fields are set correctly. We could use the interactions pane,
but then repeating the test is time-consuming.

Here are two test cases

10

/** A JUnit test case class.
 * Every method starting with the word "test" will be called when running
 * the test with JUnit. */
public class ChapterTester extends TestCase {

 /** A test method.
 * (Replace "X" with a name describing the test. You may write as
 * many "testSomething" methods in this class as you wish, and each
 * one will be called when testing.) */
 public void testX() {
 }
}

One method you can use in testX is

assertEquals(x,y)

which tests whether expected value x equals y

11

A testMethod to test first constructor
/** Test first constructor and getter methods getTitle,
 getNumber, and getPrevious */
public void testFirstConstructor() {
 Chapter c1= new Chapter("one", 1, null);
 assertEquals("one”, c1.getTitle(),);
 assertEquals(1, c1.getNumber());
 assertEquals(null, c1.getPrevious());

 Chapter c2= new Chapter("two", 2, c1);
 assertEquals("two”, c2.getTitle());
 assertEquals(2, c2.getNumber());
 assertEquals(c1, c2.getPrevious());
}

Every time you click button Test in
DrJava, this method (and all other
testX methods) will be called.

first
test
case

second
test
case

assertEquals(x,y):

test whether x equals y
; print an error
message and stop the
method if they are not
equal.

x: expected value,
y: actual value.

A few other methods
that can be used are
listed on page 488.

12

A testMethod to test setter methods
/** Test Setter methods setTitle, setNumber, and setPrevious */
public void testSetters() {
 Chapter c1= new Chapter("one", 1, null);
 c1.setTitle("new title");
 c1.setNumber(18);
 Chapter c2= new Chapter("two", 2, null);
 c1.setPrevious(c2);
 assertEquals("new title", c1.getTitle());
 assertEquals(18, c1.getNumber());
 assertEquals(c2, c1.getPrevious());
}

assertEquals(x,y):

test whether x equals y;
print an error message and
stop the method if they are
not equal.

x is the expected value, y
the actual value.

/** = the chapter no of this chapter is <= c’s chapter number.
 Precondition: c is not null */
public boolean isAtMost(Chapter c) {…}

For the method below, use THREE test cases: one when <,
one when =, one when >

