
CS100J Lab 05. Random number game Spring 2006

Name _____________________ Section time _______________ Section instructor ___________________

In this lab, you will gain experience with writing simple static methods, learn about random number generation, and learn
about class Integer. We suggest you go to the course web page and open this handout in a browser.

We have provided the skeleton code for a game called GuessMyNumber. When complete, the program will choose a
random number between 1 and n (where n is a number provided by the player) that the player can try to guess. As the
player interacts with the program, the program will respond with appropriate messages.

Task 1. The 'wrapper classes' Integer, Boolean, and Character

After the lab, STUDY SECTION 5.1 OF THE TEXT!

Primitive types are different from class-types like and , and one can't use one in a place that requires the
other. It would be nice to be able to use values of primitive types as if they were in objects (manilla folders). Java provides
"wrapper classes" for this purpose. A manilla folder of class has one field, of type , which contains an
integer. Class is called a "wrapper class", because a folder of that class "wraps around" the int value, much like
you wrap a sandwich in saran wrap.

String JFrame

Integer int
Integer

If you want to use the value 52 as an object, then use this expression:

new Integer(52)

which creates a manilla folder of class and puts the value 52 in it.Integer int

In Java, each primitive type has a corresponding wrapper class. They are discussed in Chapter 5 of the text. Here, we
discuss only class Integer. Click here to open the API spec for class Integer in a new browser window:

. Scan through the methods in class Integer, so you have an idea what is
available.

http://java.sun.com/
j2se/1.4.2/docs/api/java/lang/Integer.html

Type the following into the interactions pane and write down the result. Write "error" if you get an error message.

Integer i= new Integer(7);
int j= i can't do this!
int j= i.intValue() this will work
j

String num= "107"
int k= num can't do this
int k= (int) num or this
int k= Integer.parseInt(num) but you can use a method from class Integer!

Task 2. Understanding the skeleton code for a game

Download the from the web, store it in a new folder(!!!), and open it in DrJava. Study the program.We
have defined the following variables necessary for the game:

skeleton program

private static Integer myNumber the random number chosen by the computer

private static int max the random number is chosen in the range 1..max, where max ≥ 1

private static int numGuesses the number of guesses attempted by the user

private static boolean
playerGuessedMyNumber

true if and only if the player guessed the computer's number correctly. We can
say this more succinctly, by saying that its value is the value of this sentence:

"the player guess the number correctly"

We call the collection of definitions of these variables the . "Invariant" means "unchanging". The class
invariant is true when the values of the variables are usch that thevariable specifications (listed in the right column of the
table) are true. We expect this class invariant to be true when the program starts and to remain true before and after each
call on a method of the class. So, whenever you are writing one of the method bodies, you can assume that this class
invariant is true, and the method body that you write must terminate with the class invariant true again. So you have to
continually look at these variables and their definitions when writing method bodies.

 class invariant

We have also defined the following method:

public static void
chooseNumber(int n)

Choose a number between 1 and n. If n < 1, then tell the user the
number is not good and simply return without choosing a number.

A player who wants to start a game calls this method, giving as argument the range of integers in which they are willing to
guess. So, for a call chooseNumber(10), the program chooses a number in the range 1..10 and the user will try to guess it.
For a call chooseNumber(2), the number to be guessed is in the range 1..2 --i.e. it is either 1 or 2.

Take a look at the body of method chooseNumber and read the beginning of Section 5.6 and section 5.6.1 of the class text
(you can do the latter after doing this lab, perhaps back in your room). Those sections tell you about random numbers on
the computer and show you how a random double number that is nonnegative and less than 1 is changed into an integer in
the range 1..n.

Temporarily, make the four fields of the class public, so you can reference them from the Interactions pane of DrJava
while testing. Now, in the Interactions pane, call procedure chooseNumber a few times and see what values it puts in field
myNumber. This way, you will get an idea how the method is working.

 since the method and variables are static, you don't have to create a GuessMyNumber object. Note that

Task 3. Guessing a number

The player needs a way to tell the computer the number that the player guesses. Implement a procedure called guess(int),
and make sure it satisfies the following points:

It should print an error message and return if the computer has not chosen a number yet. (
).

Hint: Why do you think we
made myNumber type Integer instead of type int?
It should print an error message and return if the player has already guessed correctly. (

).
Hint: Use class variable

playerGuessedMyNumber
It should make sure the guess is in the range of the game (1..max). If not, print a message indicating what the range
is and that the guess isn't being counted.
It should print a message saying whether the guess is correct, too high, or too low (and count this guess).

The actual messages are up to you, but they should be something like the following:

"That's right! My number is <myNumber>"
"Sorry, my number is lower than <the player's guess>"

"Sorry, my number is higher than <the player's guess>"
"The computer hasn't chosen a number yet!"
"You've already guessed the correct number!"

The messages shouldn't mention the private variables by name, because the player doesn't know about them.

Before you write the method body, type in the specification-comment for the method and the method header. The
specification must be precise and thorough. It should say WHAT the method does. It shouldn't mention the private
variables by name, because the player doesn't know about them.

Before beginning the method body, compile the program to make sure the header (and braces { }) are syntactically correct.

Write and test the method body incrementally! For example, above, we listed three tasks the method should perform.
Write code for the first and then test what you have done by writing appropriate calls on the method. Only when you are
satisfied that that part is correct should you go on to the next one. This business of incremental coding and testing is
extremely important.

Task 4. Rating the player

After guessing correctly, the played may want to know how well they played the game. Implement a procedure rateMe(),
which satisfies the following points:

If the player has not yet guessed correctly, the method prints an error message and returns.
If the player guessed correctly, the method prints a message to the player telling them how many guesses they
attempted, along with some additional message specific to the number of guesses.

Of course, you do not have to print a special message for every possible number of guesses; there could be infinitely
many! Instead, form rating groups such as [1-2 guesses], [3-4 guesses], [5-6 guesses], and [7 or more guesses]. Use class
variable numGuesses to determine to which group the player belongs and print a message based on that.

For example, you could print the following:

... and so on.

"You're amazing! You needed only <numGuesses> guesses!"
"You're a really good guesser! You needed only <numGuesses> guesses!"

Task 5. Play the game using the Interactions pane of DrJava! :)

When your two methods are finished, and you tested enough to believe they are correct, then make all fields private again.
Then, to play a game, do this:

Call procedure chooseNumber(int) to tell the computer to pick a new number.
Call procedure guess(int) to guess what the number is.
Call procedure rateMe() to get your rating message!

Don't forget to show your TA or consultant the code you wrote!

In rating a player, 7 or more guesses is considered bad. But that doesn't take into account the size of the range. If the range
is 1..10000, 7 guesses might be good! If the range is 1..2, 7 guesses is truly bad --the player had to type the wrong guess 8
times! Can you figure out a method for determining a good number of maximum guesses based on the range of the
random numbers generated?

