CS 100: Section Assignment 11
(For the week of April 19)

Section assignments are discussed in section and are not submitted for grading. They relate to recent lecture topics and usually
to the current Programming Assignment. Prelim questions are based on Section Assignments, Programming Assignments, and
Lecture examples.

1. Refer to the class Poi nt sl nPl ane. Modify the pai nt method (in between comments) so that it draws all ten points but
just connects the two points that are maximally separated.

2. Refer to the class Poi nt sl nPl ane. Modify the pai nt method (in between the comments) so that it draws all ten points
and connects each point to its nearest neighbor.

3. Intheclass Poi nt sl nPl ane, implement a method

public static double roundtrip(int[][] D, int[] path)
/1 Dis an n-by-n pairw se distance array and path is a length n itinerary array.
/1 Yields the roundtrip distance of a trip defined by path.

4, Given that the method r oundt r i p has been implemented, modify the pai nt method (in between the comments) so that it
displays the shortest of the round trips defined by f i ndPat h(D, 0) , fi ndPat h(D, 1),....fi ndPat h(D, 9) .

public class PointslnPl ane extends Frane

public void paint(G aphics Q)
/1 Draws an approximately shortest round trip path through 10 points.
{
g.fillRect (0,0, 1000, 1000);
int[] hO = { 100, 450, 200, 300, 400, 650, 500, 850, 150, 150}%;
int[] vO = { 400, 100, 250, 500, 350, 250, 100, 300, 200, 400%;
doubl e[][] D = di st Tabl e(h0, v0);

// R R R S R R S S S R R R R R R R
int[] s = findPath(D,0);
showPat h(g, h0, vO, s);
showCi ti es(g, h0, v0);

[] R Rk Kk ko ok ok ok ok kK ok ok ok ok kK K ok ok kK ok ok ok kK R ok Rk ko kR ok kR ok kR ok kR Rk kR ko k k

}

public static double[][] distTable(int[] h, int[] v)
/I Yields an n-by-n “pairwise distance array” defined by points (h[i],v[i]), i=0,...,n-1
/I The (i,j) entry is the distance from a city at (h[i],v[i]) to
/I a city at (h[j],v[j]). Here n = h.length = v.length.
{

int n = h.length;

double[][] D = new double[n][n];

for(int i=0;i<n;i++)

/I Record all the distances from the ith point. Exploit symmetry.

D[] = 0;
for(int j=0;j<i;j++)

DIilfi] = Math.sqrt((h[i]-h[T)*(h[il-h[]) + (vIIl-vOD*(vIi-vID):
} DIl = DHIL);

return D;

}

public static int[] findPath(double[][] D, int firstStop)

/1l Assunme D is n-by-n array whose (i,j) entry represents the distance between

I/ city i and city j. firstStop nust satisfy O<=firstStop<n.

/Il Yields a length n array whose val ues are a permutation of 0,1,..., n-1.

I/ The ith conmponent of the array represents the ith stop

/!l on atrip that starts at city firstStop and visits each city exactly once.

/1 The itinerary returned approxi mates, while not of guaranteed minimal |ength, tends to
/1l be close to optimal in that regard.

int n = D.length;

/1 A boolean array that keeps track of the cities visited...
bool ean[] beenThere = new bool ean[n];
for(int i=0;i<n;i++)
beenThere[i] = fal se;
beenThere[firstStop] = true;

/] Get ready for the trip...

int[] city = newint[n]; /Il city[i] will be the index of the ith city visited.
int c = firstStop; /Il ¢ is the index of the current city.

city[0] = ¢c;

int k=0;

i nt next Stop;
doubl e mi nDi st;

for(int i=1;i<=n-1;i++)
/1l Find the i-th city to visit

{

/'l Find the first unvisited city.
k=0;
whi | e(beenTher e[K])

k++;
mnDist = D c][Kk];
next Stop = k;
/1 Nowtry to find a closer unvisited city.
whi | e(k<n)

i f(!beenThere[k] && D[c][k]<m nbDist)

{

mnbDist = D c][Kk];
next Stop = k;

}

k++;
/'l nextStop = index of the closest unvisited city. Go there.
c = next Stop;
city[i] = c;
beenThere[c] = true;

}

return city;

public static void showPath(G aphics g, int[] h, int[] v, int p[])
/1l Let n be the length of h,v,andp. Assume p is a permutation of the integers 0,1,...,n-1
/I Connects (h[0],[v[0]),...,(h[n-1],v[n-1]) in the order
I/ specified by p (with return to the starting point), i.e.,
1
/1" (h[p[O]].vIp[OI)), (h[P[LI].VIP[L]).-... (hIp[n-1]],vIp[n-1]]), (h[P[O]],v[p[OI])

g.setColor(Color.red);
int a,b;
int n = h.length;

for (int i=0;i<n;i++)
{
a = pli;
b = p[(i+1)%n];
g.drawLine(h[a],v[a],h[b],v[b]);
}
}

public static void showCities(Graphics g, int[] h, int[] v)
/I Displays the points (h[0],v[0])....,(h[n-1],v[n-1]) where n = h.length = v.length
{

int n = h.length;

intr=S8;

g.setFont(new Font("TimesRoman",Font.BOLD,14));

for(int i=0;i<n;i++)

g.setColor(Color.yellow);
g.filloval(h[i]-r,v[i]-r,2*r,2*r);
g.setColor(Color.black);
g.drawString(String.valueOf(i),h[i]-r/2,v[i]+r/2);

