CS 100: Programming Assignment P5

Due: Thursday, April 8, 5pm, Carpenter Lab (or in lecture)

You may work in pairs. Do not submit your assignment for grading unless you have read and understand the CS100
webpage on Academic Integrity. Follow the course rules for the submission of assignments or lose points.

Background

Suppose we have an array of integers

| 30 [50|20 10 40]

and that we wish to permute its values so that they range from smallest to largest:

| 10 | 20|30 40 50|

This is the problem of sorting. BubbleSort is one of many possible sorting methods and it works by repeatedly comparing
adjacent entriesin the array and swapping their contents if they are out of order. The search for out-of-order pairsis broken
down into passes. Here is what happens to our example during the first pass:

| 30 | 50 | 20 [10 | 40 | >>NoSwap>> | 30 | 50 | 20 | 10 | 40 |

30 [50 [20 [10	40	>>Swap>>	30	20	50	10	40	
30	20 [50 [10	40	>>Swap>>	30	20	10	50	40
30	20 [10 [50	40	>>Swap>>	30	20	10	40	50

Let a refer to the array. For j = 0, 1, 2, and 3 in the example we compare a[j] and a[j +1] and swap their values if
necessary. Clearly a simple f or -loop can oversee the process. Note that regardiess of the initial distribution of values in

the array, we are guaranteed that after the first pass the largest array value is in its “final resting place”. Thist means tha
can live with one fewer comparison in the second pass:

[30] 20 [10] 40| 50| >>Swap>> [2d 30 10 4b 5D

[20 30 [10 | 40| 50| >>Swap>> [20 10 30 40 5p

| 20 | 10 30] 40 | 50 | >>NoSwap>>| 20 1d 30 40 50

During the second pass we compare (and possibly swap) the vahjgs]iranda[j +1] forj = 0, 1, and 2. Again we
make a general observation: after the second pass, the two largest values in the array are in their final position. Proceeding
on to the third pass:

[20] 10 [30] 40| 50| >>Swap>> [10 20 30 4b 50

| 10 | 20 | 30 | 40| 50| >>NoSwap>>| 10 20 30 40 5D

During the third pass we compare (and possibly swap) the valuesina[j] and a[j +1] forj =0 and 1. After the second
pass, the three largest values in the array are in their final position. Even though in this example we know that the array is
now sorted, we proceed on to the fourth and final pass:

| 20 | 20 | 30 | 40 | 50 | >>NoSwap>> | 10 | 20 | 30 | 40 | 50 |

We draw some “general conclusions from oun = 5 example:

1. After k passes array entriag n- k] , a[n- k+1] ,...,a[n- 1] are sorted and do not have to be “looked at” again
because they already house kHargest values in the array.
2. The array is guaranteed to be sorted aftkipasses.
3. If no swaps are performed during a pass, then the array is sorted and there is no need to continue.
4,
In case you were wondering, none of these conclusions depend on the array having distinct values as was the case in our
example.

In Part A you implement a BubbleSort method for integers and for strings. This part of the assignment is designed to give
you practice with array subscripting and nested loops. In Part B you compare Bubblesort with MergeSort, a much faster
sorting method. You will run some experiments, gather data on performance, and plot the results. This will give you further
practice with arrays and will deepen your appreciation about “running time” issues. Parts C and D are motivated by Part A.
Your implementations of integer BubbleSort and string BubbleSort are so similar that you should wonder why we cannot
just write one general BubbleSort method that can theraspigortable array. Indeed, Java does provide a framework for
doing this and by stepping you through the issues you will come to appreciate more the “object oriented” approach to
programming.

Part A. Bubble Sort on Integer and String Arrays (5 Correctness + 2 Style)

Get a copy oP5A. j ava from the website and in the cld®SA implement the following method:

/'l Pernmutes the values in data so that they are arranged fromsmallest to |argest.
/1 Returns the nunber of required conparisons.
public static int bubbleSort(int[] data)

The overall process should be under the controlvdfid e- loop that terminates upon completion of th&* pass or upon
completion of a pass that involves no swaps. (See points 2 and 3 above.) Note that the bady bfetheop will contain

af or -loop that scans the array swapping adjacent entries that are out-of-order. Thus, BubbleSort involves a nested loop
construction.

Count only comparisons between array elements. Ignore the comparisons that are associated with the loops as they check
for termination, i.e.k<a. | engt h. You will see fromP5A. j ava where to place your code. Set your Java targeP3é

and test your implementation on various random arrays to make sure it works. You can use the mettod nt that

we provide to produce a random integer array of a given length. If you comment out (pun front of) the print lines

then you can experiment with very large arrays. Depending on the speed of your machine you should be able to sort an
array of length 10,000 using about 50,000,000 comparisons in a few seconds.

Once you havebubbl eSort working, make a copy a version of it that it is able to sort arrays of strings:

/1 Permutes the values in data so that they are arranged in | exi cographic order.
/1 Returns the nunber of required conparisons.
public static int bubbleSort(String[] data)

Lexicographic order means “dictionary order”. Thudef'” is lexicographically greater tharabc” because def ” would
comes after dbc” in a dictionary. Use thé&t ri ng methodconpar eTo for lexicographic testing. Ifs and t are
strings, then s. conpareTo(t) returns an integer less than, equal to, or greater than 0O according as
lexicographically less than, equal to, or greater thanrespectively. Try out your string version dfubbl eSort on
the string array provided B5A. | ava.

The production of the string version of BubbleSort is largely a cut-and-paste exercise as only a few changes need to be
made, e.g., the type annotations and the comparison.

Submit alisting of your final version of P5A. j ava (showing your two BubbleSort implementations) and a copy of the
output produced when it is run. The mai n method that we provide must be used. It will confirm that both
implementations are doing the required sort and that they are correctly counting the number of comparisons.

Part B. Comparing BubbleSort with MergeSort (5 Correctness + 2 Style)

When analyzing the performance of a sorting method, it is customary to talk about the number of comparisons that are
required. In the n = 5 example of BubbleSort that we presented in Part A, 4+3+2+1 = 10 comparisons are required. For
genera n, BubbleSort requires

n-)+(n-2)+...+3+2+1 =n(n-1)/2
comparisons. We say that BubbleSort is an’(ethod (pronounced order n-squared method) because the number of
comparisons grows with the square of the input array lemgithat is to say, if we multiplyp by 10 then we can expect

running time to increase by 100.

Other sorting methods involve many fewer comparisons than BubbleSort. MergeSort is one example. It works by
repeatedly merging pairs of sorted subarrays into larger sorted subarrays. Here is how it proceedd 6reaample:

[J[H[E[B[P[D[I[K|A[N[F[O]C| L[] G[M]

(An array of strings with the quote delimiters deleted for clarity.) It starts by looking at 8 subproblems:

(o [w] [ElB] [P[D] [1[kK] [A[N] [F[O] [ClL] [G]M]

Each subproblem involves the merging of two length-1 sorted arrays into a single length-2 sorted array:

'H1J] [B]E|] [DblP}] [1[K|] [A[N] [FloO] [c]L] [G]M]

These are then paired giving 4 subproblems at the “next level”:

' H]J[BJE|] |[DlP[I][K|] [A[N[F[O] [c][L|G|]M]|

The subproblems here involve merging a pair of sorted length-2 arrays into a single sorted length 4 array:

' BIE[H]J]|] [D[K[I][P] [A[FIN[O] [cC][G]|] L] M|

These are paired to give 2 subproblems at the next level:

[(BJE[H[J[D[K]I [P] [AJF[NJOJC[G[L]M]

These subproblems involve the merging of a pair of sorted length-4 arrays into a single sorted length-8 array:

(B[D[E[H[I[J[K]P] [A[C[F][G][L[M[N]O]

At the final level we pair these two subarrays

(BIDJE[H[I[J[K[P]A[C[F[G]L|[M[N[]O]

and merge them to produce a single, length-16 sorted array:

[A[B[C|ID[E[F[G[H]I[J[K[LI[M|[N[O[P]

At most m-1 comparisons are required to merge two length-m sorted arrays. Thus, in our example 8*1 + 4*3 + 2*7 + 1*15
= 49 comparisons are required. Note that BubbleSort would require 15* 16/2 = 120 comparisons.

For larger n the difference is more dramatic. MergeSort is an O(n log n) method. For n = 10° this means that BubbleSort
would be slower by a factor of around 100,000, the approximate ratio of one million to its logarithm. In this part of the
assignment you produce tables and plots that confirm the advantage of MergeSort over BubbleSort.

Start by getting copies of the files P5B. j ava and Pl ot . j ava from the website. Include P5B. java (listing attached)

and Pl ot.java inyour project. (Keep P5A. j ava in the project as we'll need acces$®A. r andom) Cut and paste

your integer bubbl eSort method from P5A. j ava into P5B.j ava alongside themer geSort method that is
provided. (We have implemented a recursive version of MergeSort and it will be discussed in lecture. In this assignment
you simply uséver geSor t . Understanding how the underlying recursive process works is not necessary at this time.) Set
your Java target tdP5B and run it to make sure your settings are correct. A test plot should appear.

Rewrite P5B. mai n to do the following. For each length 200, 500, 1000, 1500, 2000, 2500, 3333, 5000, 6400, 8000,
9999, create a random integer array of that length and sort it usingbhdibl eSort and nmergeSort. These
lengths are predefined for you in the integer arsdyzes. Use the random nt method in the clas$5A to create the
random integer arrays. Make a copy of each array before you sort it, because you mbstbhireSort and

mer geSort on the same array. Do this by using the procediopy that is implemented for you in the cld5B.

As you sort these arrays, you must keep track of the number of comparisons usedldyeSort and ner geSort
for each length. Do this by creating a pair of integer atvaybl eSor t Conps andmer geSor t Conps. After you run
bubbl eSort on an array of lengthsi zes[i], record in bubbl eSort Conps[i] the number of required
comparisons. Likewise, after you roer geSort on an array of lengthi zes[i], record inmer geSor t Conps|i]
the number of required comparisons.

Print a 3-column table that displays the valusiofes[i], bubbl eSort Conps[i], andmer geSort Conps|i]
for i =0 throughsi zes. | engt h- 1. The table should be "nice looking" with appropriate headings.

Finally, use thé?l ot class that we provide to display the comparison counts. The use of this class is amply illustrated by
this fragment that is in the givétbB template:

int[] sizes = { 200, 500, 1000, 1500, 2000, 2500, 3333, 5000, 6400, 8000, 9999} ;
int[] vy = {1200, 1500, 2000, 2500, 3000, 3500, 4333, 6000, 7400, 9000, 10999} ;
int[] z = {5000, 0, 6000, 1000, 7000, 2000, 8000, 3000, 9000, 4000, 9999},
new Pl ot ("Test", sizes,y, z);

Your P5B. mai n should produce two plots via the statements

new Plot(“BubbleSort Results”,sizes, bubbleSortComps, ql);
new Plot(“MergeSortResults”,sizes, mergeSortComps, q2);

wheretheql and g2 arrays are defined by
gl[i] = sizes[i]*size[i]
g2[i] = sizes[i]*(int)Math.log(sizes][i]).

for i =0 throughsi zes. | engt h- 1. With these plots you'll see how welf andn logn “track” the number of
comparisons required whéubbl eSort andner geSort are applied to a lengtisorting problem.

Submit a listing oP5B. i n, copies of the two plots, and the table..

Part C. Object Oriented Sorting (2 Correctness + 1 Style)

You have probably noted that it was a waste to have written essentially the same cbdblibeSort twice, once for
strings and once for integers. If we had wanted to sort strings usmngeSor t , we would have had to copy our integer
nmer geSort routine and modify it in the same way we modifiedibbl eSort. It would be nice to have one version

4

of mergeSort andoneversionof bubbl eSort that would work for both integers and strings (or for that matter any
other comparabl e objects that we might wish to sort, such as records in a database).

Java provides a convenient way of doing this. The class Sort abl e inthe file Sortabl e.java encapsulates an
array of objects to be sorted (the array dat a) and provides a general version of mergeSort that will work for both
arrays and strings. Add P5C. j ava, Sortabl e.java, and Conpar abl e.java to your project. Set your Java
target to P5C and run it to make sure your settings are correct. Here is a excerpt fromthe class Sor t abl e. j ava:

public class Sortable
{
Conpar abl e[] dat a; /1 the array of objects to be sorted
int conps = 0; /1 nunmber of conparisons needed to sort this array

// The constructor creates a new instance of Sortable with the given data array
Sort abl e(Conpar abl e[] array)

data = array;

}
Conparabl e tenp[]; /| Tenporary storage for nergeSort

/] Pernmutes the values in the array so that they are arranged fromsnallest to | argest.
/1 Returns the nunber of required conparisons.

public int mergeSort ()

{

}

/1 Permutes the values in elenents p through g-1 of the array so that they are arranged
/1 fromsmallest to |largest. Returns the nunber of required conparisons.
public int mergeSort(int p, int q) {

while (i <nid & j < q
if (data[i].leq(data[j])) tenmp[k++]

el se tenmp[k++]
conps++; //tally this conparison

data[i ++];
data[j ++];

}

The method Sor t abl e. mer geSort implements exactly the same algorithm as P5B. ner geSor t , except that it is
now an instance method and it operates on arrays of type Comnpar abl e. Also notethat the required comparisons are
carried out in terms of what looks like a “comparison method’eq. (Think ofl eq as “less than or equal to”).

To summarize the changes,HBB we have
public static int[] tenp; // Tenporary storage for mnergesort
while inSor t abl e itis
Conparabl e tenmp[]; /1 Tenporary storage for mergeSort
In P5B the sorting methods are static:
/1 Permutes the values in the array so that they are arranged fromsnmallest to | argest.

/'l Returns the nunber of required conparisons.
public static int nergeSort(int[] data)

{}

/I Permutes the values in elements p through g-1 of the array so that they are arranged
/l from smallest to largest. Returns the number of required comparisons.

public static int mergeSort(int[] data, int p, int q)

{.}

whilein Sor t abl e they are instance methods that operate on the instance array dat a:

/1 Permutes the values in the array so that they are arranged fromsnmallest to | argest.
/'l Returns the nunber of required conparisons.

public int mergeSort ()

{.}

// Permutes the values in elements p through g-1 of the array so that they are arranged
I/l from smallest to largest. Returns the number of required comparisons.
public int mergeSort(int p, int q)

{...}
Finally, in P5B we compare array entries with the usual <= operator

if (data[i] <= datalj]) temp[k++] = data[i ++];
el se tenp[k++] = data[j ++];

whereas irBor t abl e itis

if (data[i].leq(data[j])) tenp[k++] = data[i++];
el se tenp[k++] = data[j ++];

In this part of the assignment we’d like you to “generalize” your intB§&bubbl eSort in exactly the same way. Cut
and paste itinto the Sor t abl e class in Sort abl e. j ava alongside themer geSort met hod provided. Modify
it appropriately so that it can be used to sort any arragafipar abl e objects. Model your changes on thg ven
mer geSort implementation.

To be sorted by these routines, objects must be "wrapped" in a class that implemé&usplae abl e "interface". This
interface forces the class to provide a procedueg] that defines what it means for one object to be “less than or equal
to” another. The interface is defined in the fi@npar abl e. j ava (attached) along with two implementations, one
for integers and one for strings.

This approach allows a sorting routine to sort very different types of objects in a uniform way. Instead of writing different
versions for integers, strings, etc., which are compared using very different comparison operators, we can write the sorting
routine once and for all in terms of the abstract comparison oper&gr The sorting routine knows nothing about how

| eq is implemented. This is determined by the objects that are being sorted.

Read through the code carefully and think about the relationship betwe&otheabl e class and the classdsnt and
LexStr that implement theConpar abl e interface. Note that the interface nan@npar abl e can be used as a
type. Nothing inSort abl e ever refers tol nt or LexStr, but only to Conpar abl e.

Before we can sort &tring or int array, the array must be converted. For exampl8t @ ng array must be
converted to aLexStr array, and a new instance @&ort abl e must be created with that array @kt a. The
conversion fromStri ng[] to LexStr[] is handled by the static proceduteexStr. convert. The LexStr|[]
object can then be passed to the constructdaft abl e, e.g.,

/!l Create an array of strings to sort.

String[] s1 = {"the","quick","brown","fox","junped", "over", "the", "l azy", "dog"};
/1l Convert it a sortable object referenced by |sl.
Sortable Isl = new Sortabl e(LexStr.convert(sl));
Isl.print();

/1 Sort the object referenced by | sl and count conparisons.
conps = | sl.nergeSort();

/[l Print results.

Systemout.println("Merge Sort Result:");

Isl.print();

System out. println("Nunber of conparisons =" + conps);

This is an excerpt fror®5C. j ava. Run this program and submit the output along with a listing of pabibl eSor t
implementation in the clasor t abl e.

Part D. A New Comparable Class (2 Correctness + 1 Style)

Now suppose we want to sort strings according to a different order, which we will call modified lexicographic order. In
this order, astring x isless than or equal to another stringy if either

e Xxisshorter thany, or
» xandy arethe same length, and x is lexicographically less than or equal toy.

Thus we compare the strings by length first; if the lengths are different, then the shorter string is always the smaller in
modified lex order. If the lengths are the same, then we compare them lexicographically. For example, if we were to sort

the quick brown fox junped over the |azy dog
according to ordinary lex order, the result would be

brown dog fox junped | azy over quick the the,
whereas if we were to sort them according to modified lex order, the result would be

dog fox the the lazy over brown quick junped.

Define a new class ModLexStr for comparing strings according to modified lexicographic order. Your class should
implement the Conpar abl e interface and should be included in the file Conpar abl e. j ava. Usethe classLexSt r
in the same file for guidance as to what to do. Test your implementation by running P5D. j ava. If you did thisright, you
should not have to change any codein Sort abl e.

Submit alisting of thecl ass MbdLexStr and the output associated with P5D. | ava.

TheFile P5SB.java:

i nport java.io.*;
i nport java.awt.*;

public class P5B {
public static void main(String args[])

int[] sizes = { 200, 500, 1000, 1500, 2000, 2500, 3333, 5000, 6400, 8000, 9999},

/1 After you run the tenplate, delete the next three lines and devel op the
/1 required main method.

int[] vy = {1200, 1500, 2000, 2500, 3000, 3500, 4333, 6000, 7400, 9000, 10999} ;
int[] z = {5000, 0, 6000, 1000, 7000, 2000, 8000, 3000, 9000, 4000, 9999} ;
new Pl ot ("Test", si zes, vy, z);

}

/1 Place your bubbl eSort nethod from P5A.java here:

public static int[] tenp; //tenporary storage for mnergesort

/1l Permutes the values in the array so that they are arranged fromsmallest to |argest.
/'l Returns the nunber of required conparisons.

public static int nergeSort(int[] data)

/lallocate tenmporary storage array

temp = new int[data.length];

/lcall recursive nergeSort procedure on whol e array
return nergeSort (data, 0, data.l ength);

}

/! Pernutes the values in elenents p through g-1 of the array so that they are arranged
/1 fromsmallest to |argest. Returns the nunber of required conparisons.
public static int nergeSort(int[] data, int p, int Q)
{
int conps = O;
/1if length is 0 or 1, nothing to do
if (q- p<2) return O;

//otherwise split into two subarrays of roughly equal |ength
//and sort themrecursively
int mid=(p+ q)/2
conps = conps + nergeSort(data,p, md);
conps = conps + nergeSort(data, md,q);
//merge the two sorted subarrays
=p; //index into first subarray
int j =md; //index into |ast subarray
int k = p; //index into tenp array
while ((i < md) & (j < q)) {
if (data[i] <= data[j]) t enp[k++]
el se t enp[k++]
conps++; //tally this conparison

datafi ++];
data[j ++];

}
white (i < md) tenpl k++] = data[i++];
while (j < q) tenp[k++] = data[j++];

//copy sorted subarray back to original array
for (i =p; i <q; i++)

data[i] = temp[i];

return conps;

}

/1 Yields a reference to a second copy of the array.
public static int[] copy(int[] a)

{
int[] ¢ = newint[a.length];
int i;
for (i =0; i < a.length; i++)
c[i] = a[i];
return c;
}

The File Compar able.java
inport java.util.*;
i nterface Conparable {

bool ean | eq(Conpar abl e q);
String toString();

/1 For conparing strings |exicographically
public class LexStr inplenents Conparabl e

{
String value; // The String value of this LexStr object
/] The constructor.
LexStr(String v) {
val ue = v;
}
/1 Yields true if this string "equals or cones before" g.
publ i c bool ean | eq(Conpar abl e q)
{
String gvalue = ((LexStr)q).val ue;
//conpare the strings value and qval ue | exi cographically
//conpareTo is defined in the String cl ass
return val ue. conpareTo(qgval ue) <= 0;
}
/1 Yields the value of this object as a string.
public String toString() {
return val ue;
}
/1l Convert a String array to a LexStr array.
public static LexStr[] convert(String[] s)
{
int i;
LexStr[] Is = new LexStr[s.length];
for (i =0; i <s.length; i++) Is[i] = new LexStr(s[i]);
return |s;
}
}

/1 For conparing integers
public class Int inplenents Conparable {
int value; //the integer value of this Int object

/1 The Constructor.
Int(int v) {

val ue = v;
}

/1 Yields true if this integer is less than or equal to qg.
publ i c bool ean | eq(Conpar abl e q)
{

}

/1 Yields the value of this object as a string.
public String toString()
{

}

// Convert an integer array to an Int array
public static Int[] convert(int[] s)

return value <= ((Int)q).val ue;

return String.val ued (val ue);

.
int i;
Int[] Is = new Int[s.length];
for (i =0; i <s.length; i++) Is[i] = new Int(s[i]);
return Is;
}

10

