
Algorithmic Game Theory Problem Set 1
CS 6840 Spring 2014 Due Friday, February 14th

The questions on this problem set are of varying difficulty. For full credit, you need to solve at
least 4 of the 5 problems below. A full solution for each problem includes proving that your answer
is correct. If you cannot solve a problem, write down how far you got, and why are you stuck.

You may discuss the questions with other students, but need to write down the solution yourself.
Please acknowledge the students you discussed the questions with on your write-up. You may use
any fact we proved in class without proving the proof or reference, and may read the relevant
chapters of the book. However, you may not use other published papers, or the Web to
find your answer.

Solutions can be submitted on CMS in pdf format (only). Please type your solution or write
extremely neatly to make it easy to read. If your solution is complex, say more than about half a
page, please include a 3-line summary to help us understand the argument.

We will post answers to questions on Piazza.

(1) Recall that a game is a potential game if there is a function Φ(s) of the vector of strategies
taken by the players, such that for any strategy vector s, any player i, and any alternate strategy
s′i for this player Φ(s′i, s−i) − Φ(si, s−i) = ui(s

′
i, s−i) − ui(si, s−i). Here s−i denotes the vector s

with coordinate i missing, (s′i, s−i) is the vector s with coordinate i replaced by s′i, and ui(si, s−i)
is the utility of player i when the players strategies form the vector s. Show that a finite game is
a potential game if and only if for any two players i and j, and for any pair of strategies si, s

′
i and

sj , s
′
j the following equation holds.

ui(s
′
i, s−i)−ui(s) +uj(s

′
i, s
′
j , s−i−j)−uj(s′i, s−i) = uj(s

′
j , s−j)−uj(s) +ui(s

′
i, s
′
j , s−i−j)−ui(s′j , s−j)

where (s′i, s
′
j , s−i−j) denotes the vector s with coordinates i and j replaced by s′i and s′j respectively.

(2) Consider a continuous version of the Tragedy of the Commons Game from lecture (a simple
model of a resource allocation game) where n players are sharing bandwidth of c and each player
is choosing his or her rate. More formally, each player i chooses an amount xi ≥ 0. The utility of
each player depends on both xi and the sum of bandwidth X =

∑
j xj used by all. Players prefer

higher xi, but lower total X, as getting close to the available total capacity hurts performance.
The utility of player i when the vector of chosen strategies is x is ui(x) = xi(c −

∑
j xj) and the

player’s goal is to maximize utility. We have seen in class that this game has a symmetric Nash
equilibrium, where each player uses strategy xi = 1

n+1c.

(a) Show that this Nash equilibrium is unique, that is, the game has no other equilibrium.
(b) Is this game a potential game? Either argue that it is not, or give a potential function.

(3) We showed in class that all congestion games are potential games. The goal of this problem is
to show the opposite: that each finite potential game is equivalent to a congestion game, that is, for
any finite game that is an exact potential game, there is a congestion game with the same number
of players, each player having the same number of strategies, and a one-to-one correspondence
between the strategies in the two game, so that the payoffs are equal for each player.
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We will call a game a team game if for any strategy vector s all players get the same payoff,
that is u1(s) = u2(s) = . . . = un(s) for all s. We will call a game a dummy game if the payoff of
the player does not depend on his own strategy (only on the strategy of the others), that is for all
i, all s and s′i we have ui(s

′
i, s−i) = ui(s).

(a) Show that all potential games are the sum of a dummy game and a team game, that is, for
each potential game there is a dummy game with utility udi and a team game with utility
ut and the same set of strategies, so that ui(s) = udi (s) + uti(s) for all players and strategy
vectors.

(b) Show that all team games are equivalent to a congestion game. Hint: it is OK to have a
really large set of congestible elements

(c) Show that dummy games where each player has exactly two strategies are equivalent to a
congestion game.

(d) Show that all dummy games are equivalent to a congestion game.

(e) Show that all potential games are equivalent to a congestion game.

(5) A strategy si of a player i is ε-dominated by a different strategy s′i if for all strategy profiles
s−i of the other players ui(si, s−i) ≤ ui(s′i, s−i)− ε, that is si is at least an ε worse for i than s′i no
matter what the other payers do. Let si be an ε-dominated action of a player i.

(a) Show that if a player i uses the weighted majority algorithm discussed in class on Monday,
February 3 to choose his/her strategies, that the probability π(si) that he/she is playing
strategy si goes to zero over time.

(b) Give an example of a game with a coarse correlated equilibrium, and an ε-dominated action
of a player i, where player i is playing action si with positive probability.

(6) Recall the set-up for online regret-minimization from Lecture (Monday, February 3): there
is a fixed set A of actions; each day t = 1, . . . , T you pick an action at at ∈ A (possibly from
a probability distribution) based only on information from previous days; and then a cost vector
ct : A→ [0, 1] is unveiled. The goal is to design a (randomized) algorithm that, for every sequence
of cost vectors, has small expected average regret. [Recall that the (average, per time-step) regret
is the difference between your average cost 1

T

∑T
t=1 c

t(at) and the average cost of the best fixed

action 1
T mina∈A

∑T
t=1 c

t(a).]

(a) The most natural algorithm is to pick the strategy each day that seemed best so far, that is
at time t pick the strategy at that minimizes

∑t−1
s=1 c

s(a). Show that the average regret of this
algorithm can be Ω(1) as T goes to infinity. How large can you make the ratio between the
average cost of the best fixed action, and the average cost of this algorithm?

(b) Let’s consider the following randomized pre-processing step. For each action a, initialize
the starting cumulative cost to a random variable, Xa. Let Xa be iid random variables,
each distributed as the number of coin flips needed until you get heads, assuming that the
probability of heads is ε, using independent experiments for each action a.
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Then, every day t, you pick the action that minimizes the perturbed cumulative cost prior
to that day: −Xa +

∑t−1
s=0 c

s(a). We assume that the random variables Xa are independent
from the costs ct. Note that this selection can be implemented if the algorithm has access to
the whole vector ct after each day t.
Prove that, for each day t, with probability at least 1− ε, the smallest perturbed cumulative
cost, that is mina−Xa +

∑t−1
s=0 c

s(a), is at least 1 less than the second-smallest item in this
minimum.

(c) As a thought experiment, consider the (unimplementable) algorithm that, every day, picks the
action that minimizes the perturbed cumulative cost −Xa +

∑t
s=0 c

s(a), taking into account
the current days cost vector. Prove that the average regret of this algorithm is at most
maxaXa/T .

(d) Prove that E[maxaXa] = O(ε−1 log n), where n is the number of actions.
(e) Use the previous parts to prove that, for a suitable choice of ε, the algorithm in (b) has

expected average regret O(
√

logn
T ), just like the multiplicative weights algorithm covered in

class. (Make any assumptions you want about how ties between actions are broken.)
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