
CS6840 - Algorithmic Game Theory (4 pages) Spring 2014

March 14 - Price of Anarchy for GSP
Instructor:Eva Tardos Jonathan DiLorenzo (jd753)

Administrative details:

The fourth problem set will be out after break.
That will be the last one before the final.

Generalized Second Price (GSP)

Def:
n is the number of slots.
∀i. we have some αi corresponding to the click-through rate at slot i.
m is the number of ads (or advertisers).
vj is the value per click for ad j.
γj is the quality factor for ad j.
The probability of someone clicking ad j in slot i is αi × γj .

For today, we will assume that ∀j. γj = 1. This is a common assumption, which mostly serves to
simplify notation.

In GSP, we ask advertisers for some bid bj and sort by bj × γj (i.e. sort bj given our assumption).
Note that bids are given at a per-click rate, not a total.

We can safely assume b1 ≥ ... ≥ bm (on account of the sorting noted above), which means that
∀i. pi = bi+1 because it’s a second price auction (well, excluding that last i, where we say pi = 0).

The slots have a total ordering based on α, so also assume WLOG that α1 ≥ ... ≥ αn.

We can set m = n by adding phantom slots (if n < m, where they have an α = 0), or by adding
phantom bidders (if m < n, where they have a b = 0), so for simplicity, we’ll consider this situation.

On a side note, apparently Google invented the γ and Yahoo did not initially use it. The γ helps
the search company get more money.
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Price of Anarchy

Theorem 1. Price of Stability of GSP is 1 (i.e. in a full info game there exists a Nash Eq. that is
optimal).

We will come back to this theorem a bit after break as it needs a topic that hasn’t yet been covered.

So now to the part we’re actually dealing with:

Theorem 2. Price of Anarchy: all Bayesian Nash of GSP have SW (NE) ≥ 1
4SW (Opt) assuming

∀i. bi ≤ vi where i are advertisers.

In fact, it turns out that SW (NE) ≥ 1
2(1− 1

e
)SW (Opt), but we won’t prove this today. Also, note

that the second condition, ∀i. bi ≤ vi tends to be accurate since you don’t want to bid more
than your value as bidding above your value is dominated by bidding the value itself (see further
explanation at the end).

It’s best to think of the value/click as not being random. You can sort of figure this out if you’re an
advertiser. In actuality, the real randomness comes from γ which turns out to be super random, but
in our case we’re assuming it to be 1.

We prove Theorem 2:

Proof. Recall that ui = (vi − pi) ∗ αki
where ki is the slot that i gets with bid bi.

Firstly, we choose some b∗
i = vi

2 because this happens to be convenient for our proof.

If b is the Bayesian Nash vector and b∗ is the bid vector from above, then:

Ev−i(ui(b∗
i , b−i)|vi) ≤ Ev−i(ui(bi))|vi)

by the definition of a Nash. We take the expectation over vi and sum over i:

∑
i
Ev(ui(b∗

i , b−i)) ≤
∑
i
Ev(ui(bi))

And so we get our standard Bayesian Nash.

Now, suppose in Opt, ad i goes to slot ji. In that case, i contributes vi × αji to SW (OPT ). Note
that this is the value times the number of clicks, since γ = 1.

Let βj be the bid that actually wins slot j in GSP. Note that this is a random variable. Also, recall
that b∗

i = vi
2 . Then: ui(b∗

i , b−i) ≥ 1
2viαji − βjiαji .
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Here is the intuition for why this is true: We want to claim that i ’wins’ if he gets slot ji (the slot
he gets in optimum) or better. He loses if he gets a slot lower than ji. If he wins, then the price
pi ≤ b∗

i = vi
2 . Then, vi − pi ≥ vi

2 and the number of clicks is greater than or equal to αji (since the
slots are ordered by α and he did at least as well as slot ji). Thus, the above inequality holds (since
ui must be greater than the first term on the right side of the inequality).

If he loses, then it’s still true because vi
2 ≤ βji so it just says that ui ≥ 0 (or some negative number).

Now, we sum over all players (explanations of some steps below the equations):

∑
i

ui(b∗
i , b−i) ≥

1
2

∑
i

viαji −
∑

i

αjiβji (1)

= 1
2OPT (v)−

∑
i

αjiβji (2)

= 1
2OPT (v)−

∑
i

αki
bi (3)

≥ 1
2OPT (v)−

∑
i

αki
vi (4)

= 1
2OPT (v)− SW (b(v)) (5)

Of note:
ki in steps (3) and (4) are meant to denote the slot that player i gets with bid bi.
The equation in (3) is true because if we sum over i, we cover all the values whether we use the ji
notation or not.
The inequality in (4) is true because ∀i.vi ≥ bi.

Thus, we now know both of these things:∑
i
Ev(ui(b∗

i , b−i)) ≥ 1
2Ev(OPT (v))− Ev(SW (b(v)))∑

i
Ev(ui(b∗

i , b−i)) ≤
∑
i
Ev(ui(bi)) ≤ Ev(SW (b(v)))

and so we get:

2Ev(SW (b(v))) ≥ 1
2Ev(OPT (v))

And so we’ve proven what we want.

Final claim: Bidding above your value is a dominated strategy. bid bi > vi is dominated by bi = vi.
If you’re bidding above your value either you pay more and you’re hosed or you pay less than your
value and then you may as well have bid the same as your value.

Thus, the assumption made that bi ≤ vi is a decent assumption. Of course, in the real world we
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may want to drive neighbors out of business or make sure that they don’t get business at least, in
which case bidding above our value is perhaps worth it. Though arguably you could include that in
your value.


