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Last lecture, we defined smoothness of auctions as following:

Definition 1. An auction game is (λ, µ) smooth if ∃s∗, s.t,
∑

i ui(s
∗
i , s−i) ≥ λOPT − µ

∑
i pi(s).

Where o(s) is the outcome at strategy vector s, Vi(o(s)) is the value of player i at outcome o(s),
pi(s) is the payment of player i given strategy vector s, and ui(s) = Vi(o(s)) − pi(s), OPT =
maxo

∑
i Vi(o).

Using smoothness, we also had the following two theorems on PoA bounds for full info. game
and Bayesian game (respectively).

Theorem 1. For a full information game, (λ, µ) smooth implies for any Nash s, SW (s) ≥
λ

max(1,µ)OPT .

Theorem 2. For a Bayesian game, (λ, µ) smooth with s∗i depends only on vi for all i, implies for
any Nash s, E[SW (s)] ≥ λ

max(1,µ)E[OPT ].

In this lecture and next lecture, we will look at examples of smooth games.

Example 1: First Price Auction of a single item
• Players 1, . . . , n.

• Values of getting the item (v1, . . . , vn), and value = 0 if not getting it.

• Bids (b1, . . . , bn).

We use the following simple argument to show that the game is (12 , 1) smooth if we let s∗i = vi
2

for all i.

Proof. If j = argmaxi vi, then uj(s∗j , s−j) ≥ 1
2vj −

∑
i pi(s) because

• If j wins, uj = vj − s∗j (vj) =
vj
2 ≥

1
2vj −

∑
i pi(s).

• If j loses, uj = 0, and maxi bi >
1
2vj . Notice that

∑
i pi(s) = maxi bi because the maximum

bid person pays his bid, and others pays 0. Therefore, uj = 0 > 1
2vj −

∑
i pi(s).

1



If i 6= argmaxi vi, then ui(s∗i , s−i) ≥ 0 because if wins, utility is half of his value which is positive,
and if loses, utility is 0.

Sum up over all players we get∑
i

ui(s
∗
i , s−i) ≥

1

2
vj −

∑
i

pi(s) =
1

2
OPT −

∑
i

pi(s)

Thus the game is (12 , 1) smooth.

Thus, according to Theorem 1 and Theorem 2, (notice Theorem 2 applies because here s∗i
only depends on vi), we have SW (s) ≥ 1

2OPT for full info game and E[SW (s)] ≥ 1
2E[OPT ] for

Bayesian game.
In fact, we can get a tighter bound on PoA as follows.

Theorem 3. For the single item first price auction defined above, the game is (1− 1
e , 1) smooth.

Proof. Let bi be randomly chosen according to probability distribution f(x) = 1
vi−x from the

interval [0, (1 − 1
evi)]. This probability distribution is well defined because

∫ vi(1− 1
e
)

0
1

vi−xdx =

[− ln(vi − x)]
vi(1− 1

e
)

0 = − ln(vie ) + ln(vi) = ln( vi
vi/e

) = 1.
We use the similar technique as above, that

• If i 6= argmaxi vi, then ui(s∗i , s−i) ≥ 0.

• If i = argmaxi vi. Then vi = OPT . Let p = maxj 6=i bj , then uj(s
∗
j , s−j) =

∫ vi(1− 1
e
)

p f(x)(vi −
x)dx = v(1− 1

e )− p = vi(1− 1
e )−maxj 6=i bj ≥ vi(1− 1

e )−maxj bj = (1− 1
e )OPT −

∑
j pj .

Sum up over all i we get

∑
i

ui(s
∗
i , s−i) ≥ (1− 1

e
)OPT −

∑
i

pi(s)

Therefore the game is (1− 1
e , 1) smooth.

Similarly, according to Theorem 1 and Theorem 2, we have SW (s) ≥ e−1
e OPT for full info

game and E[SW (s)] ≥ e−1
e E[OPT ] for Bayesian game.

Comments:

1. For s∗i = vi
2 , o(s

∗) = OPT because bid is monotone in value, so the maximum value player
is always getting the item.

2. For s∗i random in interval [0, (1 − 1
evi)], it is possible that o(s∗) 6= OPT , because there’s

possibility even for the max value player to bid close to 0. So in this case the max value
person not always get the item.

3. So far we analyzed single item auction. We will talk about how to generalize to multiple
item auction next time.
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