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Abstract

With the growing need of identifying opinions and sentiments automatically from
online text data, sentiment classification tasks have received considerable attention
recently. One can treat sentiment classification as a text classification problem,
however, it is very time-consuming and somewhat impractical to acquire enough
labeled data to train a good sentiment classifier. This paper investigates a semi-
supervised learning method for sentiment classification which can take advantage
of large amounts of unlabeled data. Specifically, we learn some structural infor-
mation from both labeled and unlabeled data to form a good feature mapping for
the sentiment classification tasks, and then bootstrap the learner to improve the
classification performance. We present an empirical study on two different sen-
timent classification tasks which indicates the proposed method can make good
used of unlabeled data and improve the classification performance.

1 Introduction

With the growing ability of the online resources such as Amazon, Youtube and online forums, a
tremendous need arises as people want to know about what other people think and want to seek
out opinions in order to make informative decisions. Sentiment classification, which deals with
identifying opinions from online text, has received considerable attention recently. The task can
be viewed as a text classification problem. Given a instance of text, the goal is to classify it as
subjective (opinionated) or objective (non-opinionated). If the text is opinionated, we can further
determine whether the opinion is positive or negative.

Sentiment classification is a very challenging task. On one hand, traditional text classification tech-
niques usually do not work well on this task, since they tend to view frequent-occurring words as
good indicators of the class labels, while in opinionated text, sentiment words are usually ambiguous
and infrequent. On the other hand, acquiring human-labeled data for sentiment classification is very
difficult. Opinions are hidden in a huge amount of online resources like forums and blogs. Manual
annotation is very expensive and time-consuming.

The goal of this project is to design a semi-supervised learning method for sentiment classification,
which can take advantage of unlabeled data and improve the classification performance. The ap-
proach consists of two components. One is to learn a good feature mapping for the target sentiment
classification task using both labeled and unlabeled data. The other component is a bootstrapping
mechanism which can enhance the learner with unlabeled data. In this way, we both amplify the
features and the size of the training data. We empirically evaluate the effectiveness of the approach
on two different sentiment classification tasks. The results demonstrate that our method can make
good use of unlabeled data and improve the classification results.
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The remainder of this paper is organized as follows. Section 2 discusses related work. Section 3
briefly describes sentiment classification problems and supervised classification models. Section
4 introduces our semi-supervised learning approach for sentiment classification. Section 5 shows
experimental results on two real-word data sets compared with other baseline methods. Section 6
presents conclusions and future work.

2 Related Work

Most prior work in sentiment classification takes a supervised learning approach to learn sentiment
classifiers. [1] studied several machine learning methods, e.g., Naive Bayesian and Support Vector
Machine (SVM) for classifying movie reviews into positive and negative. [2] built a Naive Bayesian
classifier to classify sentences into subjective and objective. These studies dose not take into account
the limited availability of labeled data.

Semi-supervised learning approach is an approach to reduce the need for labeled data by taking
advantage of unlabeled data. In general, there are two kinds of semi-supervised learning approaches.
One is to bootstrap class labels using techniques like self-training[5], Expectation Maximization
(EM) [4] and co-training[6]. Self-training trains a classifier and use it to classify unlabeled data, and
then add the most confident data to the training data and repeat the process. EM approach can be
viewed as a special case of ”soft” self-training. It assumes the data is generated according to some
known parametric models, and then iteratively estimates the expectation of hidden class variables
and update the model parameters. Co-training splits features into two sets and trains two classifiers.
Each classifier picks its most confident data and retrains with the additional labeled data provided
by each other. One can imagine that classification mistakes can reinforce itself by using this kind of
methods[3]. Another category is structural learning methods which learn good functional structures
using unlabeled data. [7] proposed a graph-based method which constructs a graph with labeled and
unlabeled examples as nodes and their similarity relationships as edges. It makes the assumption
of label smoothness over the graph. [8] proposed a framework to learn predictive structures on
hypothesis spaces using unlabeled data, and then use these structures to enhance learning. The
performance of such methods is influenced by how much the structure characterize the underlying
hypothesis.

Our approach differs from the earlier work. It can benefit from the advantages of both kinds of
semi-supervised learning approaches. First, it learns structural information from both labeled and
unlabeled data to form a good feature mapping for the classification task. Secondly, it performs boot-
strapping with two feature views to enhance learning. The benefits of our approach are confirmed
by experiments on two different sentiment classification problems.

3 Sentiment Classification Models

Sentiment classification is the task of automatically classifying text (can be documents or sentences)
into a predefined sentiment classes (e.g. positive or negative, subjective or objective). An instance
of text is typically represented as a bag-of-words feature vector x ∈ Rn, where n is the size of a
pre-specified vocabulary. The value of each entry in the vector usually specify the presence of the
corresponding word. Given training examples X = {x1, ..., xm}, we can build a binary classifier
f : X− > Y , Y = {0, 1} and use it to predict labels for an unseen instance x by computing f(x).

There are many machine learning models which can be used for binary classification. Generally
they fall into two categories: discriminative models and generative models. Discriminative mod-
els, such as Logistic Regression and SVMs, directly estimate posterior probabilities p(y|x) without
modeling the underlying probability distributions over the data. Generative models, such as Naive
Bayes and Mixtures of Gaussians make assumptions about the distribution over data, and estimate
class-conditional probability p(x|y) and prior probability p(x). In this paper, we consider discrimi-
native models for sentiment classification, since in text classification, the modeling assumptions of
generative models may be too strong, while discriminative models are more reflexible.

Specifically, we use the logistic regression model. Given l labeled data {xi, yi}li=1, yi ∈ {0, 1}, the
predictor is in the form of p(y = 1|x) = 1/(1 + exp(−wTx)), where w ∈ RV is a weight vector.
w can be learned by maximizing log likelihood, which equals to solving an optimization problem of
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the form

w∗ = argmin
w

l∑
i=1

− log p(yi|xi, w) + λ||w||2

, where λ is a regularization parameter, and the term λ||w||2 is introduced to penalize large value of
w in order to reduce overfitting.

4 Semi-supervised Sentiment Classification

In this section, we will describe our semi-supervised learning approach for sentiment classification.
We will first introduce a structural learning method to learn a good feature mapping by using both
labeled and unlabeled data, and then introduce a bootstrapping mechanism which uses the learned
mappings and the original input features to enhance the classifier.

4.1 Structural Learning with Labeled and Unlabeled Data

For the sentiment classification tasks, features which are highly related to the sentiment classes (e.g.
positive or negative) are usually good indicators of the predicted labels. We refer to such features as
informative features for the sentiment classifier. Intuitively, if we strengthen the informative features,
the model will have more discriminative capability over data. The goal of structural learning is to
learn a good feature mapping which can map data to some important dimensions where the major
information of these informative features are captured.

Although we don’t have any label information about the unlabeled data, we can use its input features
for learning. The way to do that is to create some auxiliary learning tasks, each of which is a binary
classification problem of the form ”Whether this instance contains a informative feature?” We can
define the informative features based on our prior knowledge or obtain them by calculating the
mutual information using the labeled data. In this way, we can get ”labels” for the unlabeled data
and use it as training data. For each auxiliary task, we can learn a predictive function for a specific
informative feature. As the informative features are highly related to the sentiment classes, we
can view the predictive functions obtained from the auxiliary tasks as a sample of predictors in the
hypothesis space of our target classification problem. Good predictors are closed to each other in
the predictor space. If we can find some common structure shared by all the predictors, it will be
helpful for training the target classifier.

To formularize it, given input data X = {x1, ..., xl+u} (suppose there are l labeled samples and
u unlabeled samples) and K informative features, create K different learning tasks. Each task k
(1 ≤ k ≤ K) is to predict the presence of an informative feature tk by using a set of training data
(xi

−tk
, yitk), where xi

−tk
means the feature representation without feature tk (let the value on tk be

0), yitk = 1 if xi contains feature tk, otherwise yitk = 0. In other words, we can create K binary
classification tasks, each producing a predictor

fk(x−tk) = sgn(wk · x−tk), k = 1, ...,K

(it can be obtained by calculating p(y = 1|x)/p(y = 0|x) using the logistic regression definition).
The weight vector wk encodes the covariance of the informative features with the other features.
For informative feature tk, if the weight associated with feature z is positive, then z is positively
correlated with tk. Also, if feature z1 and z2 have similar weight, then they have similar correlation
with feature tk. wk can be seen as a linear projection of the original feature space onto R.

Denote the common structure shared by the K tasks as Θ. We consider Θx as a low-dimensional
parameterized feature mapping (of size p × m matrix where p ≤ K is a parameter specified by
users) where the importance of the informative features are captured. The linear predictor for each
task can be written in the form of

f(x) = sgn(wTx+ vTΘx)

, where w and v are weighted vectors learned from each task.

Followed by ASO [8], we can learn parameters {wi, vi}ki=1,Θ by a alternating optimization pro-
cedure. For each task fk, denote L(fk(x,w, v,Θ)) as the loss function. For logistic regression
classifier, L(fk(x,w, v,Θ)) = −logP (y|x,w, v,Θ).
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We minimize the empirical risk minimization.

[{wk, vk}Kk=1,Θ] = arg min
{wk,vk}K

k=1,Θ

K∑
k=1

(
1

l + u

l+u∑
i=1

L(fk(wk, vk, x
i,Θ))+λk||wk||2), s.t.ΘΘT = I

(ΘΘT = I is for regularization purpose)

Introduce a new variable zk = wk +ΘT vk, then the optimization objective becomes

[{zk, vk}Kk=1,Θ] = arg min
{zk,vk}K

k=1,Θ

K∑
k=1

(
1

l + u

l+u∑
i=1

L(zTk x
i, yi)+λk||zk −ΘT vk||2), s.t.ΘΘT = I

Then Θ, z, v can be learned alternatively using the following procedure.

1. Fix Θ, v, and find the optimum z.

2. Fix z, and find the optimum Θ, v.

3. Repeat this process until converge.

For step 1,since L(zTk x
i, yi) = − logP (yi|xi; zk) is convex, we can use gradient descent to find the

optimal value of zk.

For step 2, it equals to minimize
∑K

k=1 λk||zk−ΘT vk||2, s.t.ΘΘT = I . For a fixed Θ, we can obtain
an optimal vk by setting the gradient to be 0. Since ||zk − ΘT vk||2 = zTk zk − 2zTk Θ

T vk + vTk vk,
we have ∇vk

= 2vk − 2Θzk = 0, so
vk = Θzk

. Replace vk into the objective function, we can get λk||zk −ΘT vk||2 = −λk||zkΘT ||2 + λkz
T
k zk.

So the optimization problem becomes maximizing
∑K

k=1 λk||zkΘ||2s.t.ΘΘT = I . Let Z =

[
√
λ1z1, ...,

√
λKzK ] be a m×K matrix, then it becomes

Θ∗ = argmax
Θ

||ΘZ||2, s.t.ΘΘT = I

. Let Z = UDV T be the singular value decomposition of Z where the diagonal elements of
D are arranged in decreasing order, then ||ΘZ||2 = tr(ΘZZTΘT ) = tr(ΘUD2UTΘT ) =
tr(DUTΘTΘUD) =

∑
i D

2
ii||ΘUi||2. Note that we have 0 ≤ ||ΘUi||2 ≤ 1 and D has descending

diagonal entries, so the solution are ||ΘUi||2 = 1 for the eigenvectors Ui which corresponds to the
first p diagonal entries in D, and we can get Θ = UT

[1:p,:], whose rows are the first p rows of UT .

Now we can learn the parameters {wk, vk}Kk=1,Θ alternatively using the above procedure. How-
ever, it is usually sufficient to use the Θ obtained from the SVD in the first iteration. The small
perturbation of Θ in the rest iterations doesn’t affect much on the performance. [8]

4.2 Bootstrapping with Two Feature Views

An common technique for semi-supervised learning is to enlarge training set by adding the most
confident unlabeled points together with their predicted labels. However, simply using the predic-
tion results of the current classifier may reinforce the classification mistakes. Co-training [6] is an
effective technique to reduce mistake propagation. It splits features into two sets, each of which is
sufficient to train a good classifier, and the two sets are conditionally independent given the class.
Then it trains two separate classifiers and choose the unlabeled data with the most confident predic-
tion and help each other with these additional training data.

From Section 4.1, we can see that there is a natural feature split in our data. One set is from
the original feature space x, and the other is from the learned low-dimensional feature space Θx.
Each set is sufficiently for learning the sentiment classifiers. However, they are not conditionally
independent given the sentiment labels. To relax this strong assumption of feature independence,
we introduce a new bootstrapping mechanism to incorporate unlabeled data.
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Denote the two separate sets of features as A = x and B = Θx, and the two classifiers as fA
and fB . When fA chooses an unlabeled example with high confidence, it will be automatically
added for learning fB . Intuitively, fA should only consider choosing unlabeled example x if fA’s
confidence in predicting x and fB’s confidence in predicting x are both high. Similar for fB , its
chosen examples should have high confidence in the both views of fA and fB .

Since A and B are highly correlated, we can expect the added training data to be helpful for both fA
and fB . So we consider choosing the same set of unlabeled examples to label for fA and fB . The
selection criterion is based on combining prediction probability ((pA(y|x)+pB(y|x))/2. Unlabeled
examples with the highest combining probability will be chosen with its predicted labels.

The bootstrapping algorithm works as follows. Given a set of labeled data Xl and unlabeled data
Xu, the algorithm first creates a sample pool P containing L unlabeled examples. It then iterates
the following procedure. First use Xl to train two different classifiers fA and fB , and then make
predictions on the unlabeled pool P . Rank the L unlabeled examples in decreasing order according
to the score (pA(y|x) + pB(y|x))/2, where pA(y = 1|x) = 1/(1 + exp(−fA(x))), and disregard
the examples on which fA and fB disagree on the predicted labels. According to the prediction,
select cp positive examples with highest score and cn negative examples with highest score, and add
them into Xl along with their predicted labels. Finally fill the pool P with new cn + cp examples
which are randomly drawn from Xu.

The whole algorithm is described in Algorithm 1.

Algorithm 1 Semi-supervised Learning for Sentiment Classification

Input: Xl = {xi, yi}li=1, Xu = {xj}l+u
j=l+1, K, p, L, cp, cn

Output: predictor f

1: Select K informative features t1, ..., tK
2: Create K binary classification tasks fk using training data (xi

−tk
, yitk), i = 1, ..., l + u, where

yitk = 1 if xi contains feature tk, otherwise yitk = 0.
3: for k = 1 to K do
4: wk = argminwk

{−
∑l+u

i=1 logP (yitk |x
i
−tk

;wk) + λ||wk||2}
5: Let W = [w1, ..., wK ], compute SV D(W ) = UDV T

6: Let Θ = UT
[1:p,:]

7: Create a pool P by drawing L unlabeled examples randomly from Xu

8: while Performance does not decrease do
9: Train a classifier fA on labeled data Xl using feature X

10: Train a classifier fB on labeled data Xl using feature ΘX
11: for all x in P do
12: if fA and fB agree on the predicted label of x then
13: Compute Score(x) = (pA(y|x) + pB(y|x))/2
14: Rank all x in P in decreasing order according to Score(x)
15: Select the first cp examples in P with positive labels and first cn examples in P with negative

labels
16: Replenish P with cp+ cn examples drawing randomly from Xu

17: Add the selected examples along with their predicted labels to Xl

18: Train f on Xl with features (X; ΘX)

5 Experiments

To evaluate the effectiveness of our approach, we experimented on two different sentiment classifi-
cation tasks. One is to classify reviews as positive and negative using a corpus of Amazon product
reviews[10]. There are four different types of product: Book, DVDs, Electronics and Kitchens. Each
domain contains 1000 positive reviews, 1000 negative reviews, and a large number of unlabeled re-
views. The other task is to classify sentences of news articles to be subjective or objective using a
news data sets MPQA[11]. It consists of 535 news articles, covering different topics from a variety
of countries. There are 11112 sentences in total. All sentences are manually labeled with respect
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Table 1: Statistics on Evaluation Data Sets
Data set Labeled(Positive) Labeled(Negative) Unlabeled Features
Book 1,000 1,000 6,000 40,834
DVDs 1,000 1,000 34,741 83,514
Electronics 1,000 1,000 13,153 31,101
Kitchen 1,000 1,000 16,785 27,300
MPQA 6,212 4,900 – 120,146

Table 2: Accuracy on Amazon data sets(%)
Method Book DVD Electronics Kitchen
LR 73.2 74.06 77.46 79.4
NB-EM 73.13 59.73 71.33 68.4
SSL 77.26 76.26 80.86 84.26
Bi-SSL 78 76.4 81 84.73

to subjectivity. The details of these data sets can be found in Table 1. The MPQA corpus does
not contain any unlabeled data, and in Table 1 the number of positive(negative) instances instances
corresponds to the number of subjective(objective) instances.

5.1 Methodology

We compared four different baselines in the experiments.

• LR: The standard logistic regression classifier using only labeled data.

• NB-EM[4]: A semi-supervised learning algorithm which learns from labeled and unlabeled
data using EM. It first trains a Naive Bayes classifier and labels the unlabeled documents
with probabilities. It then retrains the classifier using the labels for both labeled and unla-
beled data, and iterates the process to convergence.

• SSL: The structural learning algorithm discussed in Section 4.1, which creates auxiliary
tasks to predict informative words with respect to the sentiment classes using both labeled
and unlabeled data, and then learn a common feature mapping using the alterative opti-
mization procedure. It is an extension of the work in [8]. (The difference is that [8] create
auxiliary tasks to predict the frequent-occurring words and it doesn’t consider labeled data
in the auxiliary tasks.)

• Bi-SSL: The algorithm described in Algorithm 1. Since it amplifies both features and
labeled data, we refer to it as Bi-SSL.

All algorithms were implemented using C++. EM was implemented according to the paper [4].
The alterative optimization procedure in Section 4.1 was implemented according to the paper [8]
(SVDLIBC library[12] is used for the computation of SVD). LR was implemented using the package
of OWL-QN [9] with L-2 optimization.

Table 3: Performance on MPQA data set
Method Accuracy (%)
LR 63.24
NB-EM 73.70
SSL 69.70
Bi-SSL 71.65

Method NB (NB-EM) LR (Bi-SSL)
Supervised 71.56 63.24
Semi-supervised 73.70 (+2.99%) 71.65 (+13.30%)
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5.2 Experimental Results with Amazon Data set

We randomly split the labeled data into a training set of 500 instances and a test set of 1,500 in-
stances. Figure 1 show the experimental results of accuracy averaging over 10 random trials. We set
the parameters as K = 100, p = 50, L = 500, cp = cn = 5.

Table 2 presents the results. We can see that SSL and Bi-SSL significantly outperform the super-
vised method LR in all domains, and Bi-SSL performs slightly better than SSL. This indicates that
making use of unlabeled data by performing structural learning can significantly improve the perfor-
mance of sentiment classification, and bootstrapping can contribute a bit more to the classification
performance. We can also see that NB-EM performs even worse than the supervised baseline, which
suggests that propagating labels using EM doesn’t help learning on this data set.

5.3 Experimental Results with MPQA Dataset

For the MPQA corpus, we randomly split the whole data set into a training set of 500 instances, a
test set of 2,000 instances and a unlabeled set of 8,612 instances. The setting of parameters is the
same as that in Section 5.1.

Table 3 presents the results. We can see that SSL and Bi-SSL significantly outperform the super-
vised method LR. And Bi-SSL achieves much better performance than SSL on this data set, which
implies that bootstrapping did help improve the classification performance. Notice that NB-EM
is performing the best on this data set. One reason is that Naive Bayes classifier performs much
better than logistic regression on the this data set. If we look at the performance improvement of
semi-supervised learning over supervised learning, which shows in Table 4, we can see that Bi-
SSL can obtain 13.30% improvement by using unlabeled data while NB-EM can only obtain 2.99%
improvement.

6 Conclusion

This paper investigates a semi-supervised learning method for sentiment classification. It can make
use of the unlabeled data to learn a good mapping which is helpful for the classification task, and
it can use bootstrapping to improve the classification performance. We present an empirical study
on two different sentiment classification tasks which indicates the proposed method can make good
used of unlabeled data and improve the classification performance.
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