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Abstract

In general, machine learning algorithms focus on predicting outputs
from 'flat’ data. However, increasingly a lot of the data available inher-
ently has a relational structure, either explicit or implicit. This implies
that the data values are not independent from each other. Further, indi-
vidual data values may be related to each other through different classes
of relationships. These relationships,in turn, may not be independent of
each other and may influence the existence of other relationships between
the same or other pairs of nodes. We consider the inherent challenges that
such a problem formulation presents and try to use a relational Markov
network model that learns over the individual attributes as well as the
relations among the entities. We apply the model to a dataset containing
Amazon product items, which has complementary and substitute item re-
lations. A major focus on efficacy of the approach is on the consistency
of the resultant functionality relationship graph, in addition to accuracy
in relation predictions. Through carefully designed evaluation scenarios,
we demonstrate the superior performance of the RMN model as opposed
to ’flat’ classifiers.

1 Introduction

Consider the variety of products on sale at the online shopping website, Amazon.
Every product has an intrinsic functional value. Given a desired functionality
requirement, it is generally possible to satisfy it using an appropriate combi-
nation of individual products. However, with a varied set of products, finding
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out such an optimum combination is non-trivial, since we need to ascertain the
smallest(or the cheapest) set such that none of the products conflict with each
other. It is clear that to solve the problem, we need to model the functionality
of every product in an computable way, in addition to satisfying the constraints
imposed by the selection of each constituent product.

Since the functionality of a product an abstract concept, there can be differ-
ent interpretations to it.One could approximate the functionality of a product
by the category it belongs to. This approximation only works well when there
are a small number of coherent products in a category. More often, categories
include a vast collection of products sharing some common features but different
in many other aspects of features and usability. Another way to learn function-
ality would be by processing the accompanying product information text and
forming a model about the functionality for each product. A lot of information
can also be inferred by analyzing the functionality relations between products.
These relations can be divided into two main classes-substitute and complemen-
tary relations. Intuitively, these relations capture relative functionality among
any two products. We focus our attention on the functional relations.

For every product, there would be certain other products which serve exactly
the same functionality, and hence can be used as substitutes. Similarly, there
would be other products which would add to the value of the product, and
hence act in a complementary fashion. Note that the linkages are defined at two
hierarchical levels, category and product. All products of category 'mouse’ are
expected to be complementary with all products of category "Laptop’(category
level). However, a mouse made specifically for an Apple Macbook might not
be complementary to all laptops(product level). Our goal in this project is to
predict the latter, the fine-grained relationships between individual products.

More specifically, given a set of items, our task is to construct the correspond-
ing functionality graph, consisting of Substitute and Complementary links.This
involves predicting a composite structure of consistent links, and presents unique
challenges. The first challenge is the relational nature of the dataset, which im-
plies that the individual relations are not independent of each other. The second
is the semantic constraints that the nature of the domain force on to the graph.
For instance, we cannot have a cycle of Complementary relations, and we need
to somehow model these constraints into the learning model.

We choose a Relational Markov Network(RMN) to model the relationships.
By a careful selection of clique templates, we are able to ensure both depen-
dence among the relation types as well as the constraints regarding sanity of
the product tree. In the next sections, we define the problem statement and
explore some preliminaries, before discussing RMNs.

2 Problem Definition

The problem is best illustrated with the help of an example. Consider a small
sub graph of the products dataset as shown in Fig. 1.
The links show the relationships between a set of products. The two major
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Figure 1: A products subgraph showing the relations

relationships are Substitute and Complementary. For instance, a laptop may
be a substitute for another model of a laptop, but a mouse or a speaker will
be complementary to these items. Existence of a link between two products
implies a certain property on the products, and gives us a better idea of the
pair’s relation with other products in the graph. Note that both of these rela-
tionships have some inherent properties which are not necessarily similar. For
example, the Substitute relation is transitive and symmetric, but the same is
not necessarily true for the Complement relation.

Consider a set V = {vy,v2,v3...v,} of n products. For each product, we have
a set of p attributes, which are denoted by the set A, = {ai1,ai2,...a;p}. In
addition, each product is related to other products by means of Substitute and
Complement relations, which we define by S and C' as below.

sij = {(vs,v5) : v; and v; are substitutes}

¢ij = {(vi,v;) : v; is complementary to v, }

This gives us a graph G(V, E) where E = S|JC. Note that this is not a graph
in the strict sense, since C' edges are directed, while the S edges are undirected.
The problem of predicting the new links can now be stated as follows.

DEFINITION 1: Given a products graph G(V, E) and a separate set of products
P disjoint with V', predict the S and C relations in the new graph G’ = (P, E').

If we consider the edges as data points for learning(and ignore the relational
dependencies), then the latter formulation is a standard classification problem
with three output classes = {Substitute, Complementary, None}.

2.1 Related Work

Currently, the taxonomies used to classify products achieve it on a very coarse
basis(not per product basis), using either the subcategories of products , or



their manufacturer or any other tangible attribute. Amazon and other mer-
chants have systems that try to suggest the functional relations, but most of
the methods are based on the statistics of users’ action, rather than modelling
of the inherent functionality.

At a more conceptual level, the goal here is to predict a structured output
based on relational data. Recently, a lot of interest has been shown in the
machine learning community over relational learning. Owing to the relational
nature of the data, many relational learning models extend graphical models to
model the relations between data points [6, 3, 5]. However, none of the pre-
vious work on relational learning have had their focus on predicting consistent
structural output, which is our goal in this paper.

2.2 Contribution

A new dataset for product domain was collected. A previously existing model,Relational
Markov Network, was applied to the novel products domain to predict the func-
tionality graph. It was ensured that the final graph is consistent. To the best of

our knowledge, our work is the first attempt at learning functional relationship
among products using relational learning.

3 Preliminaries

3.1 Data Collection

A major obstacle was the absence of relevant data about the relationships that
we plan to capture. Hence, the first task was to collect data about the rela-
tionships between products. Amazon seemed to be a good choice, because they
publicly show recommendations to users (based on the product being viewed)
on their website. Along with basic attributes of each product, we collected items
marked as 'Frequently Bought Together’ and "What did users ultimately buy?’.

Note that the data collected does not give an accurate picture of the sub-
stitute and complementary relationship. Amazon uses the statistics related to
its customer’ activities to present these suggestions, and so this information is
inherently noisy. We will discuss later how our model formulation handles the
noise in data.

We concentrated on the Electronics store of Amazon. The following infor-
mation about a product was collected, using a combination of web scrapping of
the Amazon website plus Amazon’s Product API calls.

Name, ASIN code (Unique Amazon ID), Price, Manufacturer, Category,
Hardware Platform, Operating System, Department, Product SubCategory, "Tags
associated with the product’, "Frequently Bought Together items’(Complementary
Products), "What did Customers ultimately buy after viewing this item’ (Substi-
tute Products), ’Ancestor categories of the product’

Though the text description of the product may allow us a more accurate
(and less noisy) model of the utility of the product, we decided not to include it



Table 1: Characteristics of data

Property Nodes Edges

PRODUCT TYPE

— Computer 2505

— Consumer Electronics 1007

— Software 911

— Others 5577
PLATFORM

- PC 6281

— Mac 1207

— Others 2512

CLASS

— Substitute 35540
— Complementary 33446
TOTAL 10000 68986

mainly because of the variation in the description text size and quality among
products of different manufacturers. Note that '"Hardware Platform’ and ’Op-
erating System’ are domain-specific features.

3.2 Relational Domain

We use the analogy of relational database systems to specify the problem do-
main. Our schema consists of a single entity type, Product-Pair(P). Each
product-pair P is associated with three sets of attributes, content attributes
P.X(e.g. categories of constituent products), relation attributes P.R(e.g. link
to other product-pairs sharing a product) and label attributes P.Y(i.e. Sub-
stitute, Complementary, None). An instantiation I of the schema specifies the
set of actual entities and the values of attributes for each entity. We will use
1.X, 1.Y, and I.R to denote the content, label, and reference attributes in the
instantiation I; and I.z, I.y, and I.r to denote the values of those attributes.

4 Modelling the Problem

One of the major drawbacks of standard machine learning algorithms that we
tried was that they are not able to model the topographic features. So we now
try to focus on the problem using a learning model that can learn over relations
present between entities. We choose the Relational Markov Network [3] for
reasons underlined in the Appendix. In particular, the formulation involving



cliques lends itself well to the concept of patterns in relationships, which are
useful for the products network.

An RMN requires the specification of domain class and the relations that
work on instances of that class. For the product relationship problem, we define
the domain as the set of all possible edges between products. Note that this
includes actual as well candidate edges, which we would like to predict. We
specify the relationship in the form of clique templates, which translate to cliques
in the unrolled Markov network. More precisely, a relational clique template
specifies a set of cliques in the Markov network. Fach clique template defines
the rules for a clique to be included in the template. Intuitively, a clique template
can be thought of as an assertion about the classes of the involved nodes, given
some conditions pertaining to the nodes hold.

DEFINITION: A relational Markov network M (C, ®) specifies a set of clique
templates C and corresponding potentials ® = {¢.}..c to define a conditional
distribution:

P(Iy|l.z,I.r)= III H I ¢t ac,1y.)

CeC ceC(I)

where Z(I.xz,I.r) is the normalizing partition function (all other variables are
as defined before in Section 3.2):

Z(I.az,I.7) ZH H(bfxafyc)

Ly ceCceC(I)

4.1 Clique Formulation

We considered the important properties of the Substitute and Complementary
relations to arrive at the cliques templates to use. In choosing the templates,
there is a direct trade-off between expressiveness of the templates and tractabil-
ity of the Markov network generated. Substitute relation follows commutative
and transitive, and reflexive properties. For complementary relations, we note
that the probability of complementary relations increase between a pair of prod-
ucts if there exists a similar edge to one of them from the other’s substitute
product.

We choose a size of maximum 3 for the templates, since that is the minimum
required to correctly encode the transitivity relation. After a careful analysis of
the products network, we propose the use of the following two clique templates.
These templates cover most of the dependencies enumerated above, plus have
the advantage of being compact in their representation.

We define the cliques as follows.

1. For every 3 nodes which are good candidates of substitution amongst each
other, define a clique for the edges connecting them.

2. For every 3 nodes such that exactly two of them are good candidates for
substitution, and the other node is a good candidate as a complement to



either of them, define a clique connecting the three possible edges of the
triangle.

We determine a ’good candidate’ by defining a score function over all the
attributes of each product-pair for Substitution and Complementary links sep-
arately. Here, the first template encodes the substitute relation properties. The
second one is used for the prediction of complementary relations based on exist-
ing relations of substitutes of the same product. Though the formulation seems
to suggest O(n?) cliques for the network, the formulation of properties for good
substitution candidates allows for a more computable number of cliques.

4.2 Learning and Inference

We maximize the likelihood of the conditional probability to return the opti-
mal values for weights(w) of the clique potentials. To help avoid overfitting, we
assume a prior over the weights and use maximum a posteriori(MAP) estima-
tion [3]. Writing the potential function as ¢(v.) = exp(w.f(v.)), we write the
likelihood of the data:

2
L(w,d) =w.f(I.y,l.x,I.r) —log Z(I.x,1.r) — H2w7|2|2 +C
o
Note that here d is the only data point, which is the instantiation of the whole
product network.The gradient is given as:
w
2

fUy Ix l.r)— Eu[f(Ly,L.x,Ir)] —
o
where the expectation E,[f(I.y,I.xz,[.r)] is :

> Iy La, Lr)Py(Iy Lo, Lr)

1.y’

Here, the sum over .y’ involves an exponential number of assignments to
all the label attributes in the instantiation. Hence, we need to compute the
expectation over the joint assignments to all the entities together. For a large
network such as in the products domain, exact inference would turn out to be
intractable. Hence we use an approximate method, Belief Propagation(BP) for
inference on the unrolled Markov network.

4.3 Dealing with Noisy Data

We now show how specifying the model using the clique formulation allows us
to effectively deal with noisy data (as long as it is not very frequent). Suppose
in the training data, an Windows mouse was associated with an Apple laptop
as complementary product. Although from an ontological point of view, the
relation seems correct, it is not valid for the specific pairs of items, because
they are incompatible. Since the clique structure is expected to have a condi-
tion stipulating that the '"Hardware Platform’ attribute for complementary links



should be the same, this relation edge will not be included in any of the cliques.
This implies that the presence of this spurious data point will not affect the
computation of the probabilities of other relations in the Markov network.

5 Graph Consistency

The nature of the problem demands that the relationships generated must al-
ways follow a tree structure for complementary links. Cycles are allowed for
substitute links, but only if all the links in the cycle are substitution relations.
Our current formulation of RMN does not enforce any of these checks explic-
itly. However, there are soft constraints in both clique templates that decrease
the probability of certain inconsistent configurations(such as a cycle of three
Complementary relations). Surprisingly, testing on the data has shown that the
conditions are obeyed for most parts of the graph generation. Intuitively, it
can be imagined that the general structure imposed by the cliques propagates
these properties to the whole graph.Ensuring graph consistency is then a simple
process of running a consistency check on the output graph, and classifying the
least probability edges among the conflicting edges as None.

For the purpose of comparison, we also encoded the structure constraints
explicitly in the network. A clique template was included in the model for all
the cases that cannot occur in a consistent functionality graph. These cliques
were assigned low potentials(~ 0) to prevent their occurrence. We call this
model, RMN with Explicit Checking(EC), and will compare the results in the
next section.

6 Evaluation

A variety of scenarios were used to evaluate the Relational Model. Most of these
concern varying the amount and structure of train data available. Given the
related nature of the data points, the model was tested against a wide setting
of train/test data selection.

e Incremental Addition: Given a product graph complete with nodes
and relations, predict the edges of a new node to be added.

e Missing Links: Randomly select k£ edges and k non-edge node-pairs and
remove them from the graph. Train the model and predict the classes of
these node-pairs.

e Empty Graph: Given a set of nodes, predict the relationship graph
between them.

e Sparse Graph: Given a set of nodes and a few relationships, predict the
whole relationship graph.



Table 2: Results of Preliminary Algorithms

ALGORITHM Substitute Accuracy Complementary Accuracy

Multinomial Logistic 94.5 84.3
K-nearest Neighbors 85.8 71.0
Bayes 82.4 76.4
Decision Tree 91.6 63.3

6.1 Preliminary Algorithms

Out of the above, Missing Links scenario lends itself well to standard machine
learning formulation. If we consider the edges as data points for learning, and
the type of relation as the output class, then this formulation is a classifica-
tion problem with three output classes = {Substitute, Complementary, None}.
Hence, we ran a baseline set of algorithms against the data for this scenario-
Multinomial Logistic Regression, Bayes Classifier, K-nearest Neighbors and De-
cision Trees. For all these algorithms, the data was suitably parsed and appro-
priate features were assigned. Note that since none of these models capture the
underlying product graph, no topological features could be used. Inherently,
each of these models treat each edge as an independent data point, and tries to
predict its class. We present the results of these algorithms in Table 2.

It is important to note here that the difficulty of the problem varies with
each scenario, increasing in the order: Incremental Addition, Missing Links,
Sparse Graph and finally Empty Graph. The key difficulty posed in each of
the problems is the prediction of consistent edge relations. As the number of
potential edges in these scenarios increase, the number of possibly valid and
consistent edge configurations increases exponentially. In fact, Empty Graph is
the hardest since it requires to predict the relationships among nodes without
any prior evidence in the graph.

6.2 RMN evaluation

First of all, RMN model was tested against the baselines algorithms for the
Missing Links scenario. The data was divided into 5 parts, and each part was
individually divided into test and train data. For the Incremental Addition
scenario, we divided the whole dataset into two parts(80-20), and trained the
model using the majority of the data. Performance was averaged over all the
individual runs for each test node. The results are presented in Figure 6.2.
The empty graph scenario demanded that we have two completely indepen-
dent graphs. For this, we randomly divided the products into two sets, and
removed all the edges between the two sets. Also, for one set, we removed all
the edges between its nodes too. Learning was performed on the first set, and
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Figure 2: Performance of various algorithms on the Missing Links scenario

inference on the other. The sparse graph scenario was similar to the Empty
Graph case, except that a few of the edges in the test set were retained. We
fixed this number to 10 percent of the number of nodes in the test data. The
results are presented in Table 3.

6.3 Discussion

In the Missing Links scenario, RMN outperforms the other baseline models as
expected. In particular, multinomial regression performs equally well for the
Substitute prediction, but has a far lower accuracy for Complementary links.
This can be attributed to the fact that Substitution relation is just a measure of
nearness of the product attribute vectors in the attribute space, and hence can
be accurately predicted by ’flat’ classifiers. The real improvement of the model
is in predicting the Complementary links. Similar results are obtained for the
Incremental Addition scenario.

The Empty Graph(EG) and Sparse Graph(SG) scenarios present interesting
results. The accuracy drops for Complementary prediction in the EG scenario.
The RMN is a highly relational model, and the edges chosen by the model
depend a lot on the already present edges. It appears that EG scenario offers
a wide scope for RMN to make errors in the beginning, which then translates
to a lower accuracy in classification overall. The SG scenario (with 0.1N edges)
however, performs with an accuracy comparable to the Missing Links case.This
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Table 3: RMN Performance: Different Scenarios

SCENARIO Substitute Accuracy Complementary Accuracy
Incremental Addition 95.5 91.3
Missing Links 93.8 91.0
Empty Graph 914 79.4
Sparse Graph 92.3 87.3
Empty Graph(with EC) 90.9 80.3
Sparse Graph(with EC) 92.9 87.1

is an important observation, and leads us to conclude that the RMN requires
only a few edges to be initialized in a new domain to be more effective.

The EG and SG scenarios with Explicit Consistency(EC) have roughly the
same performance as standard EG and SG on the dataset. Further, since we
enumerate all the possibly inconsistent cliques, the running time becomes in-
tractable for large networks. We conclude that the standard RMN learns the
constraints implicitly well and for most cases, explicit consistency is an overkill
and can be avoided.

7 Conclusions and Future Work

In this paper, we have presented an application of Relational Markov Model to
the products domain. Experiments indicate that prediction of the functionality
graph is highly accurate using RMN, except in the Empty Graph case. However,
it must be emphasized here that most practical applications of the functionality
graph concern predicting the relations of a new unseen product, or suggesting
possible relations for a group of products. In all such scenarios, our experiments
show RMN to be highly effective.

Future work includes testing variations of the RMN model for efficiency,
specifically clique potentials and features. To possibly improve the results of the
Empty Graph scenario, we would want to try online learning and analyze the
performance. For the Sparse Graph scenario, we would also like to investigate
the effect of number of initial edges labelled on the performance of the relational
model, and try to find an optimal ratio.

Appendix:Relational Learning-A Brief Survey
Because of the inherent dependence between the various data points, it ap-

pears that a model with knowledge of the relations might perform better than
the standard learning algorithms. In recent years, a lot of interest has been
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shown in learning models over relational data, encompassing the field Statisti-
cal Relational Learning(SRL). Three major models under this framework are the
Markov Logic Networks, Probabilistic Relational Models and Relational Markov
Networks. A major part in this project was to ascertain which of these models
would give the best results for the products domain.

Probabilistic Relational Model

A PRM [5] specifies a probability distribution over a particular instance of
the graph by specifying a Bayesian network-like template-level probabilistic
model for each entity type. It can be thought of as a relational extension to
Bayesian networks.Given a particular instantiation graph, the PRM induces a
large Bayesian network over that instantiation that specifies a joint probability
distribution over all attributes of all of the entries. However, this formulation
runs into a problem if the input graph has a possibility of having cycles. In the
products domain, there could be cycles between items that are substitutes of
each other, which would in turn lead to cycles in the induced Bayesian network.
This would not lead to a coherent probabilistic model. Even if we treat the rela-
tions themselves as random variables [4], we need to consider a big performance
slowdown due to N2 number of links between any N nodes.

Markov Logic Network

Markov Logic networks [6] differentiate the inherent constraints in the problem
and the probability maximization. It is a combination of first-order logic and
probabilistic graphical model in a single representation. It can be viewed as a
generalization of first order logic, in which every clause now has a finite proba-
bility of being true. Although this model allows for a very expressive framework,
it is also a very complicated model to build since we need to enumerate all the
clauses. Especially for the products domain, this model does not suit well to
encode the exact nature of the properties of relations and constraints into first
order logic.

Relational Markov Network

This model tries to combine the relational concepts of databases to the proba-
bilistic graphical model formulation. It specifies a set of clique templates based
on the relations among entities, which then corresponds to a set of cliques in
the unrolled Markov network. This model overcomes the disadvantage of PRMs
in that it is an undirected model and can be used to model cycles in the graph.
Further, cliques allows for a succinct representation of the correlation between
the attributes of entities and the relations in which they participate.
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