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1.0 Introduction:  

Cancer therapies require classification of cancers to target specific cancers with specific 
treatments. Thus the improvements in cancer therapies have been linked to improvements in 
cancer classification. To enhance the efficiency of the treatment it is important to identify the 
specific markers that are to be targeted in a treatment. Apart from enhancing the efficiency of 
treatment, targeting of specific markers allows for the minimization of toxicity resulting from the 
treatment. The advent of micro array technologies has greatly aided in the identification of 
specific genes through the measurement of gene expression data. Current micro array 
technologies allow for the measurement of thousands of gene expression levels from a single 
sample simultaneously [9]. However in almost all the cases the number of samples considered is 
far less than the number of genes measured. This often causes the problem of overfitting during 
classification. Thus it is important to reduce the dimensionality of the sample before using it for 
classification [3]. Moreover from a diagnostics perspective it is important to isolate the specific 
genes so that a specific diagnostic setup and treatment setup may be developed to predict, 
classify and treat such a cancer. This also helps in reducing the cost of treatment [1].  

To achieve the above objectives various feature selection methods in combination with various 
classification tools have been used [1, 3, 4, 15, 16, 17, 18]. Some of the prominent methods that 
have been used to classify data from micro-arrays have been k-nearest neighbors (KNN), nearest 
centroid, linear discriminant analysis (LDA), neural networks (NN) and support vector machines 
(SVM). For selection of subsets of genes, feature selection methods such as t-test, Principal 
component analysis (PCA), individual gene selection, pair-wise gene selection, non parametric 
scoring and now recently evolutionary computing algorithms such as genetic algorithms (GA’s) 
and  particle swarm optimization (PSO)  are being applied [9]. 

Currently the gene selection methods may be classified into two categories. One, a filter 
approach wherein each gene is considered independently evaluated according to a specific 
criteria and then ranked accordingly based on its score. The top ranked genes are considered for 
while evaluating the classification accuracy of the classifier. Prominent approaches in this 
category include t-test filtering, SNR filtering, PCA etc.[9]. Second is the wrapper approach 
wherein, selection of a subset of genes and classification is performed in the same process. A 
subset of genes are considered and evaluated based on the classifier’s performance. This process 
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is carried out recursively till the desired classification accuracy is obtained. Evolutionary 
algorithms like PSO [15, 16, 18], GA [16] have been used in conjunction with the SVMs.  
Guyon et. al demonstrated a recursive feature elimination method (RFE) –SVM  [3] based 
wrapper. Though the wrapper approach results in the improvement of classification accuracy, a 
major problem is the computational cost associated while using the wrapper. It is important to 
use algorithms that traverse the search space efficiently with reduced computational costs. Thus 
PSO is used here which when compared to GAs or RFE, is simpler, faster and converges to an 
optimum quickly. However PSO has certain drawbacks like converging to a local optimum, 
reduction in convergence rate while approaching optimum etc. To this end a novel discrete 
PSOSVM is proposed that not only avoids local optima but also converges to a global optimum 
quickly and demonstrates enhanced classification accuracy. 

2.0 Methods 

2.1 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a stochastic global optimization technique developed by 
Eberhart and Kennedy in 1995 based on social behavior of birds [2]. In PSO a set of particles or 
solutions traverse the search space with a velocity based on their own experience and the 
experience of their neighbors. During each round of traversal, the velocity, thereby the position 
of the particle are updated based on the above two parameters. This process is repeated till an 
optimal solution is obtained. According to the original PSO the particle velocity and position are 
updated according to the following equations. 

 

 

where  vk
i n and pk

i n are the velocity and position of kth particle in ith dimension during nth 
iteration, pbest is the best position experience by the particle upto that iteration and gbest is the 
best position experience by all particles upto that iteration. The best positions of a particle are 
evaluated according to a fitness function. 

c1, c2 are called acceleration constants usually equal to 2 and r1 and r2 are random numbers 
uniformly distributed in (0, 1). Thus these constants are a measure of inertia experienced by the 
particle. 

The PSO developed by Eberhart and Kennedy is suited for continuous optimization problems. 
The current problem requires a discrete version of the PSO as the features here are genes which 
are discrete entities. To address this problem Q.Shen [15] developed a discrete version of PSO 
and applied it to gene selection. Each particle contains n number of features wherein each feature 
or position is assigned 0 or 1. An assignment of 1 corresponds to the selection of the feature and 
an assignment of 0 corresponds to its rejection. In Shen’s approach velocity of a particle in a 
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dimension for a given iteration is generated randomly between 0 and 1. Thereby position of each 
particle is updated according to the following rules  

 

                                 

                                

   

Yu et. al [18] also followed the same update rules as suggested by Shen. However to avoid 
converging to a local optimum they used a variable to store continuous unchangeable values of 
particle best values. If a particle has the same number of particle best values consecutively for a 
fixed number of times, the particle best was set to zero. This was done to allow the particles to 
escape local optima. Alba et. al used geometric particle swarm optimization which applied a 3-
parent mask based crossover to move the particle [17].  

The current approach however uses update rules for particles that differ from the ones used 
above. It uses a linear combination of current position, particle best position and global best 
position to determine the next position of a particle. Each particle position is a vector whose 
features are binary valued. For example (1,0,1,1,1,0,0…..1) is a position vector of the particle 
where 1 represents selection of the corresponding gene and 0 represents rejection. The 
subsequent position vector is determined by a linear combination of three vectors, the particle’s 
current position vector, best position vector of the particle and the best position vector among all 
particles. 

 

where w1, w2, w3 are probabilities assigned to current position, particle best and global best such 
that w1+w2+w3=1. 

 

2.2 Support Vector Machines 

Support vector machines are a class of linear learning machines used for classification and 
regression [4]. In binary classification problems SVM constructs a maximal margin separating 
hyperplane to separate the input data points into classes. 

           The separating hyper-plane is of the form 
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where w is the normal vector to the hyper-plane. 

Since it is a binary classification problem the two classes can be denoted with +1 and -1. 
We can select two hyper-planes of the margin in a way that there are no points between them and 
then try to maximize their distance. 

Thus the parallel hyper-planes are of the form 

      

      

The distance between the hyper-planes i.e. 2/||w||(separating and the ones parallel to it) is to be 
maximized. To exclude the data points we have 

         ;  

These conditions can be rewritten as 

                                                                                   

Thus constructing the Lagrangian the whole optimization problem can be reconstructed as 

Minimize: 

                                          

 
          

The corresponding dual representation is  

Maximize 

                                                (13)                                                                    

          

                

wherein the inner product may be replaced with an appropriate kernel to map the input vectors to 
a higher dimension to construct a maximal hyperplane. For further theory refer to Vapnik et 
al[3]. 
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SVM is widely used in bioinformatics for cancer classification, protein fold class prediction, in 
predicting protein-protein interactions etc. However in most of these problems the number of 
features per sample is much greater than the number of samples available. This usually creates a 
problem of overfitting with the SVMs and leads to a reduction in classification accuracy. It has 
been observed that reduction in number of features leads to an increase in accuracy and thus 
feature selection is preceded before classification. [1,3,4] 

2. 3 PSOSVM for cancer classification 

Here a novel particle swarm optimization support vector machine hybrid is proposed for a 
molecular-level based classification of cancer and a subsequent selection of gene markers 
important in recognizing cancerous tissues. 

Examples of particles in discrete space 
Particle 1 1 0 0 0………………………………………………………………7129 times 

Particle 2 0 0 1 0…………………………………………………………………….1 0 1 1 1 

Particle 3 1 1 0 1…………………………………………………………………….0 1 0 1 1 

 
Example of training data set 
Sample 1 0.6 0.9 1.0 2.0……………………………………………………………7129 digits 

Sample 2 0.1 0.3 0.6 0.4……………………………………………………………………. 

Sample 3 0.5 0.4 0.3 0.6……………………………………………………………………. 

 

Corresponding training subset for particle 1 (since first four digits are 1 0 0 0) 
Sample 1 0.6 ………………………………………………………… 

Sample 2 0.1 ……………………………………………………………………. 

Sample 3 0.5 ……………………………………………………………………. 

 

Corresponding training subset for particle 2(since first four digits are 0 0 1 0) 
Sample 1   1.0 …………………………………………………………… 

Sample 2   0.6 ……………………………………………………………………. 

Sample 3   0.3 ……………………………………………………………………. 
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                  Figure2. Flow chart of PSOSVM 

Initialize the particles in the swarm 
with random 0’s and 1’s 

Generate corresponding subsets of the 
particles from the original data set 

Evaluate fitness of particles where fitness is 
a function based on classification accuracy 
from SVM of corresponding subsets 

Is required classification accuracy 
attained or the number of 
iterations have reached threshold Yes 

�����Select          
best subset 

Update the velocity of particles using 
velocity update formula of modified 
discrete PSO 

���No 

� End 
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In this method a fixed population of particles is considered, wherein each particle has the same 
number of dimensions as the number of genes in the data set considered. For example a position 
vector of an n-dimension particle would be of the following form. pk={pk

1, pk
2,pk

3,………. , pk
n} 

where pk
i  is either 0 or 1. Thus the total number of dimensions of a particle is equal to the total 

number of genes of a sample. Thereafter each particle is initialized randomly with 0’s and 1’s. 
The bit 1 when assigned causes the selection of corresponding gene and bit 0 causes the gene to 
be discarded. This generates a new feature subset corresponding to the particle under 
consideration. The subset corresponding to the particle has only those genes to which bit 1 has 
been assigned. Hence for a fixed population of N particles N corresponding subsets are 
generated. The fitness of each particle here is a function of classification accuracy. Unlike the 
previous works of (Shen et. al, Yu et. al, Alba et. al) wherein Leave One Out Cross Validation 
accuracy (LOOCV) is considered as a measure of fitness, here classification accuracy is the 
fitness value of the particle as ultimately it is the classification accuracy resulting on a test which 
is required to be optimized*. For each training subset generated the SVM is trained on the 
training subset and then tested on the corresponding test subset to obtain the classification 
accuracy. This approach considers also considers all the genes and significantly differs from past 
works where a fixed number of genes are selected initially and then remaining genes are input 
into the wrapper [1,3,15,16,18]. 

Particle Swarm Optimization generally faces the problem of converging to a local optimum. To 
avoid this problem a two pronged approach was considered. (1) For 60% of the particles 
considered all the features are initialized randomly with 0s and 1s. For 10% of the particles only 
20 genes are selected randomly and the rest discarded, for another 10% 30 genes are selected and 
for the last 10%, 150 genes are selected. This results in an initialization diversity thus generating 
different position vectors with varying fitness values. (2) The update rule given by equation (6) is 
applied only to 80% of the particles, for the rest of the particles genes are selected randomly. 
This step allows for the rest of the 80% of particles to diverge out of local optima. 

The probability weights considered can be grouped into two sets for current position, particle 
best position and global best position. A) (w1,w2, w3)=(0.33,0.34,0.33) and 
B)(w4,w5,w6)=(0.25,0.45,0.3). The first set was used for 80% of iterations and the next set was 
used for the rest of the 20% of iterations. Increase in probability weight corresponding to particle 
best value was to allow for particles to move to their best positions at a faster rate. 

SVMperf was considered for generating classification accuracies 
http://svmlight.joachims.org/svm_perf.html and for generating cross validation accuracy for the 
data sets LIBSVM www.csie.ntu.edu.tw/~cjlin/libsvm/ was considered. The PSOSVM code was 
written in C and run on a MACOSX platform with 4GB RAM and 2.66 GHz processor. 
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3.0 Datasets 

The primary data set considered here was the (acute lymphoblastic leukemia) ALL-(acute 
myeloid leukemia) AML data set. The data set consisted of a training data set containing 27 ALL 
samples and 11 AML samples and a testing data set containing 20 ALL samples and 14 AML 
samples. Each sample contained expression levels from 7129 genes.  The data was then 
normalized and converted to a format suitable for input to the SVM. The raw unprocessed data is 
available  http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi. The corresponding reference 
paper is ‘Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene 
Expression Monitoring’ by Golub et al. 

Other data sets that were tested only for cross validation accuracies but not for a biological 
analysis are as follows 

http://levis.tongji.edu.cn/gzli/data/mirror-kentridge.html 

1. Colon cancer dataset 62 samples (40 tumors, 22 normal), 2000 genes  
2. Lung cancer dataset 181 samples(150 ADCA, 31 MPM), 12533 genes 
3. Ovarian cancer data set 253 samples(162 cancerous, 91 normal), 15154 genes 
4. Prostate cancer data set 136 samples(77 tumor, 59 non tumor), 12600 genes 

4.  Results and Discussion 

4.1 Results 

All the 7129 genes were considered for each of the 38 samples in the training data set. SVM was 
applied to the training data sets choosing different kernels and different tradeoff coefficients (C 
value). SVM performed best for linear kernel at C=100. The results are summarized below. For a 
linear kernel the resulting testing accuracy was 71.43% at C=0.01. For a linear kernel the testing 
accuracy at C=100 was 85.29% 

Table1. LOOCV at C=0.01 (default) for different kernels 

Kernel Leave One Out Cross Validation Accuracy 
Error Recall Precision 

Linear 13.16 100 84.38 
Polynomial 28.95 100 71.05 
Radial Basis 28.95 100 71.05 
Sigmoid 26.92 100 72.97 
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Table2. LOOCV at C =100 for different kernels 

Kernel Leave One Out Cross Validation Accuracy 
Error Recall Precision 

Linear 5.26 100 93.10 
Polynomial 28.95 100 71.05 
Radial Basis 28.95 100 71.05 
Sigmoid 42.11 77.78 67.74 
 

The parameters for PSOSVM were set as follows: 

1. Number of particles = 100 
2. Number of iterations = 50 
3. Probability weights (w1,w2,w3,w4,w5,w6) =(0.33,.34,.36,0.25,0.45,0.3) 

Using the above parameters PSOSVM was applied to the data sets. The best test set classification 
accuracy obtained was 94.12%. The experiment was repeated in using the same parameters 
making a 5% modification in the weights and the best classification accuracy obtained in all the 
cases was 94.12%. The number of genes obtained in each of these cases was 150 with a variation 
of 2%. This is the first time that classification accuracy from the test set is being considered for 
evaluating the fitness of a particle instead of depending on cross validation accuracies  

 

Figure3. Accuracy Value vs Number of Iterations 
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In order to make a comparison with results from other studies a 5-fold cross validation accuracy 
was used a fitness function value and the PSOSVM was applied to the AML-ALL training data 
set and other datasets. The results are displayed in the table below 

Table3. Comparison of cross validation accuracies for different datasets across various 
algorithms 

Dataset PSOSVM GPSOSVM GA+SVM Shen’s 
Method 

Yu’s 
discrete 
PSOSVM 

SNR+SVM SVM 

AML-
ALL 

 97.4 97.38 97.27 98.08  NA NA 85.2 

Colon 94.12 100 93.55 95.2 96.77 87.1 90.3 

Lung 91.1 99.44 NA NA NA NA 50% 
Ovarian 97.12 99.44 NA NA NA NA 99.205% 

Prostate 94.12 98.66 NA NA NA NA 50.8% 

 

4.2 Discussion 

This approach for the first time attempts to optimize the classification accuracy of the test set 
rather than the cross validation accuracy of the training sets. The resultant optimized 
classification accuracy for the AML-ALL test set data has been found to be 94.12 %. In order to 
make a comparative analysis with other algorithms, the five fold cross validation accuracy for 
the AML-ALL training data has been found using this approach. The value is equal to 97.38 % 
and is comparable to the k-fold accuracy values obtained from other approaches as shown in 
table 3. The other values have been comparatively lower with respect to GPSOSVM. It might be 
possible to improve the resultant accuracies by adjusting the parameters like number of particles 
randomized, probability weights, number of iterations etc. specific to each data set.  

The graph of average accuracy values versus the number of iterations shows that the optimum 
accuracy value is reached within the first 10 iterations and remains constant thereafter. Thus the 
algorithm is quick to find the global optimum in the search space. To ensure that the optimum is 
the global optimum 20% of the particles were updated randomly and did not follow the update 
rules as prescribed in equation 6. The number of iterations was set to be equal to 50 so as to 
allow the particles to emerge out of false optima. However results showed that even at the end of 
50 iterations the accuracy value remains constant and was equal to the one obtained in the first 
10 iterations. PSOSVM was run on the training and test data sets for about 20 times and the 
optimum subsets that generated the maximum classification accuracy contained about 150 genes 
with a variation of nearly 2% in all the cases. Previous approaches that obtained 4-6 genes [Ref] 
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initially removed a set of genes based on a ranking from signal to noise ratio (SNR) and then 
applied the wrapper to the existing subset of genes. The current approach considers all the genes 
and then selects an optimum subset. These subsets are not unique as there may be redundancies 
in the gene subsets i.e. gene 6 and gene 900 may have the same biological significance but result 
in a different subset contribution. The elimination of genes based on SNR takes care of these 
redundancies, thus possibly resulting in subsets with lower genes. In the current method to 
identify the genes that may be important in cancer pathways all the subsets that generated 
optimum accuracy were considered and the most frequently occurring genes were selected. Gene 
numbers 804, 2896, 4823, 4849 were found to be the most frequently occurring genes. 

Table4.  

Gene Number Gene Accession Number Gene Description 
804 HG1612-HT1612_at 

 
Macmarks 

2896 U20362_at 
 

Tg737 mRNA 

4823 X94232_at 
 

Novel T-Cell Activation Protein 

4849 X95735_at 
 

Zyxin 

 

To further investigate the variance of accuracy values with number of genes in the subset, a basic 
form of PSOSVM  that converged to a local optima was run on AML-ALL training data sets. 
The numbers of genes in each subset were considered to be input training data set to the 
subsequent run of PSOSVM and the corresponding accuracy values were observed. This was 
process was continued till the classification accuracy kept increasing. The classification accuracy 
peaked when the number of genes in the subset was in the range of 30-200. The leave one out 
cross validation accuracy ranged between 97%- 100% and the maximum classification accuracy 
obtained was 94%. These results are in agreement with the results obtained by applying 
PSOSVM optimizing test set classification accuracy as shown previously. 
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Table5. 

Number of 
Particle    

Number of 
iterations      

Number of 
GENES       

LOOCV  Classification 
Accuracy(Best 
subsets only) 

50 100 3500-4000      94, 94, 94, 94, 94,94, 94, 94, 94, 
94 

77 

50 100  1600-2000        94, 94, 94, 94, 97, 94, 97, 94, 
94, 94 

77, 79 

50 100  800-1000           94, 97,94,97,94, 94, 94, 97, 97, 
94         

79, 82 

50 100  450-600             97, 97, 97, 94, 97, 97,94, 97, 97, 
97 

82, 85 

50 100  150-300               97, 97, 97, 100, 94, 97, 97, 94, 
97, 97 

82, 85, 88, 91 

50 100  50-200                   97, 97, 100, 97, 100, 97, 97, 94, 
97, 97   

82, 85, 88, 91,94 

50 100  30-150 97, 97,100, 97, 100, 94, 100, 97, 
97    

88,91,94 

50 100  15-30 97, 94, 97, 100,100, 97, 97, 97, 
94, 100 

82, 85, 88, 91 

50 100  5-20 94, 92 ,97, 97, 94, 92, 94, 94, 
97,92 

79,82,88 
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5. Conclusion 

PSOSVM hybrid considered all the genes in the sample and optimized the test set classification 
accuracy. The solution generated by the algorithm was successful in converging a global 
optimum within a few iterations. The optimal subsets generated by the algorithm contained about 
150 genes in number. Possible redundancies in the number of genes are speculated to be the 
cause for generating high number of genes in optimal subsets. Considering all the optimal 
subsets the most frequently occurring genes were considered to be the most important marker 
genes. To validate the number of genes in the optimal subset, a subset of subset approach was 
performed which showed that the maximum cross validation accuracy and the resultant test set 
classification accuracy occurs when the numbers of genes in the subset are in between 50-200.  

The algorithm for the first time optimized the test set classification accuracies rather than the 
cross validation accuracies for the training set. In order to do a comparative analysis the 5-fold 
cross validation accuracies for various data sets was generated using this PSOSVM. The 
resulting accuracy values are in near agreement with the ones found in literature. Further 
direction of work could consider applying the same to other biological data sets and carry out 
pertinent analysis of gene subsets. Another possible direction of work would be to reduce the 
number of genes obtained in each subset by integrating a filter approach within the PSOSVM 
wrapper.  
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