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Abstract

Household robots operate in unstructured environments and may encounter un-
known objects. However, in order to manipulate an object safely, the robot must
have some sort of internal representation of the object. For many cases, a rigid
model may be assumed, but it is often the case that the object in question is best
represented by a deformable model. This paper presents an algorithm for con-
structing a piecewise-rigid decomposition of an object given a series of images
from an inexpensive color and depth camera. We demonstrate this method on
a series of household objects and evaluate the performance of our algorithm at
various stages in the model construction pipeline.

1 Introduction

Constructing a physical model of an object given only visual observation and no direct interaction
is a difficult problem. A household robot must operate in an unstructured environment and in order
to safely interact with novel objects, it must understand their physical structure. Therefore, it is
interesting and useful to consider the problem where a human leaves an object in various poses over
a period of time and a robot observes each of these poses in order to build a physical model.

Given several observations of an object over a period of time where the position and configuration of
the object has changed, we desired to produce a piecewise-rigid decomposition of the object. This
decomposition will aid planning tasks where a robot must safely pick up an object and manipulate it
into some other state. Some examples include, picking up and closing books and laptops or folding
clothing.

In order to accomplish this task, we have designed a system that we break down into components.
The input is a series of images and depth maps from a color and depth camera. After rectifying
these images and depth maps, we find salient features on the surface of the object and perform a 3D
reconstruction. This process is invariant under scaling and therefore, we present a modification to
bundle adjustment where we take depth data into consideration. Once we have multiple observations
of the same object under different poses, we use a Markov Random Field-based inference algorithm
to determine how they relate to each other. A hierarchical inference approach is designed to improve
speed of the algorithm. Finally, a spectral clustering method is used to segment the data into regions
that undergo similar rigid motion.

2 Previous Work

Recently, with the advent of low cost RGB-Depth cameras, merging depth data into existing vision
algorithms has become a popular trend in robotics. [11] uses RGB-D data to drive articulated ICP
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Figure 1: The flow of data for the various stages in our algorithm.

to create a rigid 3D model of an object. However, their implementation requires the manipulator
to grasp and rotate the object, a potentially unsafe task given no prior physical model of the object.
[19] predicts the grasping point of objects via offline training and explicitly does not build a model
of the object. Furthermore, their training set is based on a series of synthetic images. Such a data
set requires a human operator to define all geometric primitives.

In order to construct a sparse, feature-based 3D reconstruction of an object, one step that is almost
always performed at the end is bundle adjustment. [21] and [12] provide reliable initialization and
optimization, respectively, for bundle adjustment. These pieces of software provide the basis for our
depth-augmented bundle adjustment stage.

There are several previous attempts to find point correspondences between two models. Mostly,
these works exist in the graphics community where there is usually some template model that needs
to be animated. Rather than manually posing the template model for each animation, animators can
instead take a partial scan of an articulated object and deform the template to match [22], [3], [5],
[18]. Such an process would be useful for filming a human actor and fitting a 3D cartoon character
to the actor’s pose. These formulations either assume a small number of point correspondences or
they require dense and accurate data from a laser range scanner. However, [5] provides a key idea
that geodesic distance is a property to preserve in our deformation model and that inference on a
Markov Random Field using 1 and 2-cliques is a reasonable method. [4] extends [5] by providing
details on how to take a piecewise-rigid decomposition and apply articulation constraints to derive
a model that can be used for planning. In order to accelerate our desired algorithm, we look to [23]
for insight on multilevel inference algorithms. Finally, we look to [10] for insight on how to prune
outliers from our correspondence algorithm’s output.

Motion segmentation has been explored in many ways, but for the purpose of this research, we focus
on clustering methods. Some techniques focus on motion segmentation simply based on frames of
video by formulating a shape interaction matrix where points either interact with each other when
they are on the same body or they do not interact when they are on separate bodies. [17] shows
how the shape interaction matrix can be derived using QR decomposition. 3D methods also exist.
[24] shows that pixel intensity can be related to motion, but assumes that video frames are taken
with a small interval between each which is not a good assumption when a large interval of time has
passed.

3 Depth-Augmented Bundle Adjustment

Our sparse 3D reconstruction uses a standard, feature-based framework. This framework assumes a
pinhole camera model and that all of the images have been undistorted.
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1. For all images, detect interest points and compute descriptors.
2. For all pairs of images, match descriptors.
3. For all pairs of images (i, j), compute a Fundamental Matrix, Fij . Use a robust technique

such as RANSAC to discard outlier matches. The Essential Matrix, Eij = KTFijK, is
obtained where K is our camera intrinsics matrix.

4. Coalesce matches between images into global feature tracks.
5. Add a 3D point to the scene for each independent feature track.
6. Add images one-by-one with most certain images first. Initialize the camera position and

orientation based on a factorization of Eij into its rotation and translation components.
7. Apply bundle adjustment to minimize global projection error.
8. Repeat by adding more images and applying bundle adjustment until all images have either

been added to the scene or discarded.

The output of this process is a 3D point cloud where each point is tagged with a descriptor.

For those unfamiliar with the field of computer vision, a few of these terms warrant clarification.
Essential Matrix Given 3D points, yi, i ∈ 1, 2, ...n that appear in two images at normalized image
coordinates x1i and x2i, x2iEx1i = 0, i ∈ 1, 2, ...n where E is a 3 × 3 matrix of rank 2. Given
a point’s projection in one image, the essential matrix provides a line in the second image along
which the point’s projection must lie called the epipolar line. E may be factored into the rotation
and translation between the two cameras. However, since E is rank deficient and invariant under
scaling, the translation component is invariant under scaling. It is left as an exercise why the
epipolar lines are invariant under translation scaling. Similarly, the final reconstruction has a degree
of gauge freedom with respect to scaling. It is also left as an exercise why there are three degrees of
gauge freedom with respect to scene rotation and three degrees with respect to scene translation.
Fundamental Matrix and Intrinsic camera parameters In most cases, images will not be
presented in normalized image coordinates. However, the camera calibration parameters may be
used to transform camera coordinates to normalized image coordinates. E = KTFK.
RANSAC RANdom SAmple Consensus is a generic, robust model fitting technique that iteratively
samples the minimum number of data points to fit a model and then tests that model against the
entire data set. The model with the highest inlier count is assumed to be a good model for the
data. Typically, a final model is fit using something like a least squares technique on just the inliers
for the best model. In this instance, the problem is formulated as finding the fundamental matrix
between each pair of images.

The end result of this algorithm is a scale invariant scene of 3D points. However, as we will describe
in the next section, our algorithm can properly handle arbitrary scene rotation and translation, but it
will not be able to properly match two deformable models that have different scales. Therefore, we
propose a new algorithm that acts as a modification to the typical formulation of bundle adjustment,
one that takes scale into consideration.

Let xij be the projection of the jth point into the ith image. Let ai be the rotation and translation
of the ith camera and let bj be the position of the jth point. Let Q(a, b) be a function projecting
point b onto image a. Assuming the error model for projection is Gaussian, the minimization of the
projection error is a least squares problem taking on the form

a∗, b∗ = arg min
a,b

∑
i,j

||Q(ai, bj)− xij ||2 (1)

In our formulation, we assume depth is also available for each point. We modify the cost function
by including an addition depth projection error term. Let dij be the depth of point j on image i and
ait be the translation component of camera i. Our new objection function is

a∗, b∗ = arg min
a,b

∑
i,j

[
||Q(ai, bj)− xij ||2 + α||||bj − ait || − dij ||2

]
(2)

where α is a tuning parameter that informs the algorithm how much we care about depth with respect
to feature detection and matching.
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Note that this formulation is not linear. In fact, the bundle adjustment problem in general is highly
non-linear due to the rotation component of each camera. A non-linear optimization technique
is employed. Levenberg-Marquardt is a general, non-linear optimization algorithm that computes
the Jacobian at a particular point and linearizes the function. It then operates in a fashion similar
to Gauss-Newton or gradient descent depending on a dampening factor that is computed at each
iteration. If the reduction of the objective function is large at a certain iteration, the dampening
factor should be small to avoid overshooting and large otherwise.

The objective function at hand is not only non-linear, but has many local minima. Therefore, initial-
ization must be done very carefully. Typical techniques, like described above, try to add images to
the scene one by one, first choosing images that are most likely to fit the other images already in the
set. This greedy approach produces good results in general.

Since bundle adjustment is typically performed with a non-linear optimization technique, depth is
a reasonable variable to consider given that we can take existing bundle adjustment software and
make simple modifications to include this cost term. Furthermore, an analytical derivation of the
Jacobian is not required since a finite differences-based Jacobian works just as well in practice.

4 Hierarchical Correspondence Inference

The primary assumption that we make is that the deformations are approximately isometric. That is,
given two points on the surface of the object, geodesic distance is preserved under the deformation.
This is a property that we believe many deformable household objects possess.

We formulate the correspondence problem as a Markov Random Field composed of 1-cliques and
2-cliques. Let one point cloud be the source and let the other point cloud be the target. The nodes
in our MRF are the points in the source and we model them with a multinomial distribution where
each state is a point in the target that will form a correspondence. Let Ssi be the descriptor for point
i in the source and Sti likewise for the target. The 1-clique potential for each node is formulated as

φi(xj) = exp(−γ||Ssi − Stj ||2) (3)

This encodes that we favor correspondences where the feature descriptors of the two points are
similar. Let GDs(i, j) be the geodesic distance between points i an j in the source and likewise for
the target. The 2-clique potentials are formulated as

φij(xk, xl) =

{
1− 1

d̄2

GDs(i,j)−GDt(k,l)
GDs(i,j)GDt(k,l)

2 GDs(i,j)−GDt(k,l)
GDs(i,j)GDt(k,l)

< d̄

0 otherwise
(4)

The goal behind the quadratic 2-clique model was to sparsify the MRF. An inverse exponential
would have a gradual decay leaving several 2-clique potentials with near-zero potential. This leads
to a situation where it is not easy to determine the cutoff where we can disregard the edges and since
this MRF is highly connected, potentially complete. We must sparsify it in some sense if we expect
to perform inference on it. We have exact methods for inference on graphs with loops such as the
junction tree algorithm, but large cliques are not desired. [5] uses a threshold model and has found
success, but this was done on very small models. Therefore, the quadratic model seems to provide a
good balance between simplicity and a strict cutoff.

It is not applicable in this problem to apply convex optimization techniques since the problem is
discrete rather than continuous. Furthermore, the state space is so large that a continuous relaxation
of the discrete problem is not feasible. This is why we look towards graph-based inference tech-
niques. In practice, loopy belief propagation failed to converge on these graphs. Since there are
no general guarantees with respect to loopy belief propagation when it fails to converge, junction
tree was explored. However, due to the size and connectivity of these graphs, junction tree required
far too much memory to operate on the full graph. In order to resolve this problem, we propose a
hierarchical correspondence inference algorithm.

Rather than try to explicitly match a source point to a target point, we first try to assign a region of
source points to a region of target points and then recursively refine them. This coarse-to-fine ap-
proach is similar to multiresolution or multigrid approaches except the boundaries between regions
at a particular level are not entirely obvious. What we require is a way to determine how to find
these regions.
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One way to consider the problem is to think of each node in the MRF has having an importance
associated with it. We desire to sample equally spaced regions in order to get a reasonable, coarse
representation of the MRF. If we were to look at the messages being passed around in belief propa-
gation, it gives some insight that important nodes are nodes that given a random walk on the graph
will be hit the most often. The problem then becomes finding the stationary distribution of a random
walk on this graph. To find this stationary distribution, a Markov Chain Monte Carlo simulation may
be performed. Transition probabilities are defined based on the distance between k-nearest neigh-
bors. Finally, a small transition probability between all pairs of points is added to ensure ergodicity.
The second largest eigenvalue of the transition probability matrix, P , is computed to determine the
mixing time of the Markov chain where [8]

µ(P ) = max{λ2,−λn} (5)

Mixing rate = log(1/µ(P )) (6)

Mixing time = τ =
1

log(1/µ(P ))
(7)

After τ steps, the L1 norm of the stationary distribution minus the sampled distribution will be less
than exp(−1). Therefore, we have a rough idea of how many iterations to run the MCMC and get a
good idea of which nodes are the most important.

After we sample these important nodes, we cluster all other nodes based on nearest neighbor
geodesic distance. It works well to simply perform a weighted average of the geodesic distances
between all points in a cluster since they were all clustered based on geodesic distance in the first
place. However, performing a weighted average on the feature descriptors isn’t very robust. A local
region of an object does not necessarily have similar features and averaging them loses this detail.
Therefore, the 1-clique potential is reworked to be the number of matches between the two clusters
that have some L2 norm within a designated threshold normalized by the number of points in the
cluster.

This hierarchical, top-down approach is good for getting initial estimates for the positions of the
correspondences, but it does lose global information at each level. For example, if at a particular
level, two clusters are formed, the refinement in each cluster will happen independently of the other
cluster. To resolve this issue, we take a further iterative approach. Give a single top to bottom run of
the inference algorithm, we change the 1-clique probabilities to emphasize the MAP estimate that
we have found so far rather than the feature descriptor. There are some nodes where we have yet to
make a decision with high certainty. We run the algorithm again to determine how they should be
assigned. The algorithm terminates once we reach an iteration that makes no further assignments.
The algorithm is guaranteed to terminate since each iteration either increases the number of assign-
ments in which case we will eventually reach all nodes being assigned or they remain the same in
which case we terminate.

5 Correspondence Outlier Rejection

For the sake of completeness, we include a formulation of an outlier rejection algorithm that we
designed. In many cases, a model for the data is simple and a threshold-based rejection algorithm
will suffice. However, the correspondence problem of deformable models does not have a simple
model and therefore more flexible techniques must be explored. We present the algorithm and its
formulation, however, after implementation, it was found that a faster solver must be found before
it could be included in the experiments that we present.

We formulate the outlier rejection problem as follows. Given a set of elements S and a function
D : S×S → R which represents the disagreement between two elements of S, how can we choose
elements of S such that we have a large number of elements, but a low total level of disagreement
between them. If we express this as a graph where the vertices are the elements of the set and the
weighted edges are the disagreements between all pairs of elements, then this optimization problem
may be expressed as

max α
∑

v∈V xv −
∑

e∈E We min{xeu , xev}
s.t. xv = {0, 1},∀v ∈ V (8)
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Clearly, this encodes the problem exactly. For every vertex we select in the graph, we count and
weight according to the tuning parameter. For all edges, if both of its vertices are selected, then
we count the level of disagreement between them. Solving this problem can be done in worst-case
exponential time and we don’t attempt to place a tighter bound on the running time. Instead, we
consider the fractional relaxation of this problem.

max α
∑

v∈V xv −
∑

e∈E We min{xeu , xev}
s.t. xv ≤ 1,∀v ∈ V

xv ≥ 0,∀v ∈ V
(9)

Finally, by adding some slack variables, we can turn this relaxation into a linear program relaxation
of the original problem.

max α
∑

v∈V xv −
∑

e∈E Wexe
s.t. xe ≤ xeu ,∀e ∈ E

xe ≤ xev ,∀e ∈ E
xv ≤ 1,∀v ∈ V
xe ≥ 0,∀e ∈ E

(10)

The solution of a linear program may be found in polynomial time, therefore, a polynomial time
algorithm exists to solve our outlier rejection relaxation problem. As long as a model for the dis-
agreement between elements in the model exists, such as difference in geodesic distance for cor-
respondences in our problem, this algorithm will find the desired level of balance. The fractional
solution may be quantized and used directly, or the value of the objective function may be used
in reducing the search space for a branch and bound algorithm over the integer problem’s solution
space.

6 Motion-Based Clustering

After we have two point clouds representing an object in two different poses along with the cor-
respondences between the two clouds, we desire to cluster sets of points into regions that undergo
similar rigid motion. We propose a formulation of normalized cuts that encodes this desired cluster-
ing behavior.

Let W be the dissimilarity where Wij encodes how dissimilar two points are with respect to their
motions and let S be the similarity matrix with where Sij encodes how similar two points are with
respect to their motions. Our previous assumption for this problem was that geodesic distance is
preserved under deformation. However, what does change is Euclidean distance. Therefore, we
encode two points to be similar if they have a low difference in Euclidean distance.

Wij = ||EDs(i, j)− EDt(i
′, j′)|| (11)

Sij = exp
(
−γW 2

ij

)
(12)

This formulation has the parameter γ that requires tuning. This was found experimentally, but results
indicate that some automatic adjustment is required on a per-instance basis for it to be reliable.

Additionally, we implement an existing motion segmentation affinity matrix called the shape interac-
tion matrix [7]. Let P be a 3F ×N matrix where N 3D trajectories over F point clouds are stacked
into columns. We find an orthonormal basis of RN using the SVD of P . Taking the sum of the
outer products of the first rank(P ) rows of this orthonormal basis gives us Q, the shape interaction
matrix of P . Elements of Q capture the angle between sub-bases and therefore, a 1 indicates that
two elements share the same basis and a 0 indicates they do not. Since this is a basis for trajectory,
a 1 indicates two points are on the same object and 0 indicates they are on separate objects. The
problem becomes permuting the matrix into block diagonal form which can be approximated with
normalized cuts.

Normalized cuts is an NP-Complete problem [20], so we use spectral methods to find a good ap-
proximation. Let D be a diagonal matrix such that

Dii =

n∑
j=1

Sij (13)
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Then the normalized Laplacian matrix is

L = D−
1
2SD−

1
2 (14)

We compute the eigenvalues and eigenvectors of L. Let k equal the eigengap of L. We take the
k dominant eigenvectors and apply k-means clustering. This produces our final clustering and our
piecewise-rigid decomposition. In practice, both formulations did not produce a correct eigengap in
presence of noise. Therefore, our experiments fix it to 2.

7 Experiments

7.1 Data Acquisition

The input to this algorithm is a series of video frames acquired from a color and depth camera. For
the purposes of this experiment, the camera used is a Microsoft Kinect, a low cost color and depth
camera sold for the home entertainment industry. Usage of the Microsoft Kinect is not officially
supported for use other than with the Microsoft Xbox 360, but the open source community has
reverse engineered a significant portion of the USB protocol [2]. It is assumed that data acquired
from this unit is accurate. Manual verification of all data was performed to make sure that no corrupt
data was captured.

Members of the open source Kinect community have put together a series of tools in addition to the
driver itself. One such tool that we used was a color and depth camera calibration tool [6]. Color
camera calibration works as normal. However, it is more difficult to get an accurate calibration of the
depth camera. The reason being, it’s not as simple to just image a standard chessboard calibration
pattern. Instead, we used a cardboard cutout with depth discontinuities and manually annotated
coordinates. This provided enough data to accurately find the intrinsic calibration parameters for the
depth camera as well as the extrinsic calibration parameters of the two cameras. It should also be
noted that while the Kinect serves as a low cost platform, the cameras are low quality themselves
and this calibration process must be done on a per unit basis since the parameters vary greatly from
unit to unit. The depth map to meter units calibration was performed by placing objects at specific
intervals from the camera. The regression model was found to be linear with respect to inverse
distance.

In order to fuse the depth and color data into a single view, we had to re-project the data from the
depth image onto the color image. This was achieved via a utility that we wrote using OpenGL
and will be made available as an open source, general purpose RGB+Depth re-projection utility.
Using OpenGL, we simulate a pinhole camera model and in the frame of the depth camera, we
unproject the data into the scene. Then we move the camera over to the frame of the color camera
and record the depth at each pixel. The performance of this implementation is fast enough so that
this re-projection may happen without limiting the framerate of the Kinect assuming a modern GPU
is present in the system. Furthermore, it is general enough that the camera calibration parameters
may be specified independent of the executable.

A series of deformable household objects such as toys, books, boxes, etc. where gathered. The
set of objects was restricted to objects with patterns and textures that could lead to a correct 3D
reconstruction. Therefore, objects of a single color without any patterns or sharp corners were not
included. In addition, transparent objects where an accurate depth can not be found with our depth
camera were excluded. We believe that this does not limit the application of our algorithm too much
since many transparent objects in a home, such as dishes, are rigid. Each one was placed on a table in
a particular pose and imaged from multiple views. The data set includes 9 objects, each with at least
2 poses, for a total of 49 poses. Some objects have more ways in which they could deform and so the
number of poses for a particular object reflects the number of ways we could think of deforming the
object. It was found that our hierarchical correspondence inference formulation improved results,
but not enough that we could segment the non-articulated objects well enough to make a reasonable
performance analysis on them. Therefore, we limited our results to three of the nine objects that
performed well enough to be reasonable and display them here.
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7.2 Depth-Augmented Bundle Adjustment

Feature extraction and matching was done using SIFT features [13]. In order to implement our
depth-augmented bundle adjustment algorithm, we used an existing bundle adjustment package
called Bundler [21]. Bundler performs the necessary initialization for Levenberg-Marquardt to find
a good local minimum. Then it delegates the bundle adjustment step to a library called Sparse
Bundle Adjustment or sba [12]. Our modification extracts the depth for each feature point from
our reprojected depth maps, and modifies the calls to the relevant sba functions. sba considers the
problem in terms of the parameter space and the projections along with a function to compute the
projection from the parameters. Then it uses Euclidean distance to compute the projection error.
Simply reworking the depth-augmented bundle adjustment as projection with three coordinates, x,
y, and depth, and then redefining the projection function to set the last coordinate to be the Euclidean
distance between the camera and the point gets us the desired functionality. The depth-trust tuning
parameter can be tuned via the command line. In order to validate the functionality of our imple-
mentation, we take the real object, measure the distance between a representative series of points
on the surface of the object and compare the distance to our reconstruction. A laser scanner was
not available and so we simply have this qualitative assessment of our algorithm. Nonetheless, we
report this qualitative performance compared to a classical BA reconstruction where we manually
find the correct scaling factor.

7.3 Hierarchical Correspondence Inference

Our hierarchical correspondence inference algorithm intends to find a valid assignment of all points
such that the assignments fit our model of geodesic distance preservation well. However, this is a
combinatorial optimization problem and we developed the hierarchical inference algorithm as a fast
approximation. In order to validate the formulation of this approximation, we compare the results of
this algorithm against an implementation of nearest neighbors that simply matches feature descrip-
tors. Junction tree inference is performed using libDAI [15], an open source discrete approximate
inference library. Geodesic distance was computed using FLANN [16] for fast approximate nearest
neighbors and MatlabBGL [9] as a wrapper to the Boost Graph Library [1] for all pairs shortest
paths.

7.4 Motion-based Clustering

The motion-based clustering task is an unsupervised task. Therefore, we developed a program that
allows a user to view a point cloud in 3D and highlight points that they believe should be in the same
cluster. For example, if the object is a plush children’s toy of an animal and the deformation is that
we twist the head around, then we expect the user to label the head as one cluster and the rest of the
body as a second cluster. Labels for all instances were done by a single user and then verified by a
second. The effectiveness of the algorithm is reported in terms of the Rand index.

8 Results

8.1 Depth-Augmented Bundle Adjustment

Results of the modified bundle adjustment algorithm were qualitatively evaluated against the unmod-
ified bundle adjustment results to make sure the depth optimization provided reasonable correction.
Objects were measured and the reconstructions were approximately 1 or 2 centimeters smaller than
the real object when the imaged object was 1 meter from the camera. We assume this is either due
to our calibration of the camera, due to the inaccuracy of the depth cameras algorithm itself, or due
to the sparsity of the final point cloud. For our goal, all we desire is a canonical scale, not that it be
extremely accurate.

8.2 Hierarchical Correspondence Inference

We also qualitatively evaluated the performance of our correspondence inference algorithm against
naive nearest neighbors SIFT matching. The results were reasonable for two component objects
with low texture symmetry, but unreasonable for the rest of our data set.
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Figure 2: A Microsoft Kinect and an image with its depth map.

Figure 3: A 3D point cloud generated from depth-augmented bundle adjustment. Left: Correct size
is 0.22 meters, Right: 0.30 meters.

8.3 Motion-based Clustering

Unfortunately, due to our simplification of the MRF where we try to sparsify the graph, geodesic
distance still works well locally, but does not work well globally on objects with symmetry. Further-
more, since we cannot determine the correct number of clusters automatically using the eigen-gap,
we simplified the problem to two clusters. We quantitatively evaluated the final performance against
a few simple examples of objects such as books that have two primary rigid components by using
Rand index based on hand labeled data.

Object NN + Shape Interaction MRF + Shape Interaction MRF + Diff Euclidean Distance
1 0.5684 0.8950 0.9518
2 0.5136 0.5856 0.5055
3 0.5198 0.5584 0.5349

9 Conclusion

Given several color and depth images of a simple object in different poses, we are able to improve the
decomposition into two rigid components over a naive nearest neighbors correspondence method.
While this type of decomposition has been possible for a few years in the field of computer graphics
where an ideal reference model is available and must be articulated to fit a laser scan, our implemen-
tation is successful in some attempts to do this with sparse SIFT keypoints and no prior reference
model. Unfortunately, the success rate is low.

The availability of low-cost color and depth cameras is significant given that they are now sold for
home entertainment. The use of the depth information in this work was used only for the recovery
of scale during bundle adjustment due to the until recent unavailability of such a low-cost camera.

Figure 4: A subset of point correspondences found between two poses. Left: SIFT nearest neigh-
bors. Right: MRF SIFT + geodesic distance. Not rendered to scale.
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Figure 5: Left: Detected rigid components. Right: Hand-labeled components.

Figure 6: Object 2 from our evaluation. This example violates the assumption that it is piecewise-
rigid, but a good two part approximation can be found.

Future work using more depth information includes using dense features such as spin images on a
Poisson surface reconstruction of the object.

Additionally, our attempt only captures rigid motion between two poses of an object. Given more
observations it is possible for the model to increase in complexity and accuracy. Perhaps a hierar-
chical decomposition or a decomposition fusion using another MRF may prove useful. A primary
difficulty in this problem is performing this decomposition with only two poses. Video of an object
makes the task much simpler since the feature points may be more robustly tracked. However, our
problem was posed in such a way that a robot would only see the objects after the human has moved
them. Observation of a human manipulating the object might be a feasible alternative goal. Finally,
rather than trying to learn rigid components through unsupervised learning, it might be more fruitful
to use supervised learning for all sub-shapes that describe common rigid components of household
items. It would be less general, but more feasible.
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