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Abstract 

The game of poker presents an interesting and complex problem for game 
theorists and researchers in machine learning.  Current work on the subject 
focuses on how to develop optimal counter strategies, often referring to the 
Upper Confidence Bounds (UCB1) algorithm to determine which of these 
counter strategies is optimal for an unknown opponent.  We present a new 
method for taking a learned set of counter strategies and selecting a winning 
strategy to employ against an unknown opponent. 

 

1 Introduction 

In 2003, a previously unknown man named Chris Moneymaker qualified for the $10000 World 
Series of Poker main event in a $40 qualifier tournament, and went on to win the biggest prize in 
poker, sparking an explosion in the popularity of the game.  In the academic world of game theory, 
artificial intelligence, and machine learning, this ignited an interest in a new research area: 
artificially intelligent poker agents. 

The most popular variant of poker played today is No Limit Texas Holdem.  In this variation, each 
player is dealt two hole cards and five cards in total are used as community cards which each 
player can use to try to make the best five card poker hand.   Due to the number of betting 
possibilities open to players at every decision, the growth of the extensive game tree for No Limit 
Texas Holdem is astronomical, easily swelling to over 1020 nodes. 

This has created a flurry of interest among researchers, as nobody can yet claim to have solved 
poker.  Solving the complex game is a matter of combining a collection of known strategies with a 
method of selecting a winning strategy to employ against an unknown opponent to maximize your 
net money won. 

Extensive research has been done on the calculation of optimal counter strategies in a relatively 
small amount of time; it is the second segment of the problem that is of particular interest.  Given 
a collection of optimal counter strategies for known, fixed strategy opponents, how can we 
efficiently select the strategy to employ against an unknown opponent during a live match?   

 

2 Previous Work 

Much of the current literature on artificial poker research focuses on counter strategy 
development, while the method of selecting which strategy to employ against an unknown 
opponent is often not the topic of discussion.  The selection algorithm often used by entrants in the 
AAAI Poker Competition is the UCB1 algorithm. [1]  UCB1 computes upper confidence bounds 
for each strategy as a function of the average payout and the number of times that strategy has 
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been used. The equation is shown below, where xj is the average payout for strategy j, n is the total 
number of hands played, and nj is the number of hands played using strategy j. 

     

 (1) 

 

The benefit of the UCB1 algorithm is that it is guaranteed to converge to the optimal strategy in 
your strategy set.  If a Nash Equilibrium strategy is known, after convergence you will never have 
a losing strategy.  However, there are two major pitfalls in the UCB1 algorithm as applied to 
poker.  First, there is no bound on the convergence period.  A number of factors contribute to the 
convergence rate, including the number of counter strategies in your set and the unknown 
opponent’s strategy.  Secondly, UCB1 assumes that the opponent’s strategy is fixed at all times.  It 
is easily exploited if the opponent switches its strategy in the middle of a match.  For example, if 
one agent uses UCB1 converges to the optimal counter strategy after 50000 hands and continues 
to play that strategy only, the opponent can switch its strategy at hand 60,000 and the agent using 
UCB1 may never recover from this switch. 

 

3 Classified Counter Strategy Selection 

Given these deficiencies in the UCB1 algorithm, we developed a method of selecting a counter 
strategy that sacrifices optimality for efficiency in convergence.  This new approach, called 
Classified Counter Strategy Selection, uses a supervised learning algorithm to select the most 
appropriate strategy based on the attributes that make up a poker player.   These attributes 
populate a vector of well known poker statistics.  Some examples of attributes contained in this 
vector are: VPIP, the percentage of hands the player voluntarily put extra money in the pot before 
the flop; PFR, the percentage of hands the player raised before the flop; and the aggression factor, 
a numerical measure of how aggressive a player is.  All attributes are normalized to be a decimal 
value between 0 and 1. 

Each counter strategy in our set is associated with a label in our learning algorithm.  To train our 
classifier, we take unknown opponents whom we have an extensive number of hands recorded and 
solve for the expected value of playing each of our counter strategies.  The label of the counter 
strategy with the largest expected value is the label we put on that opponent’s attribute vector.  
These attribute vectors effectively describe the classes of opponents that each counter strategy is 
effective against rather than associating each counter strategy with a specific opponent.  During a 
match with an unknown player, we choose the counter strategy which best exploits the class of 
player we believe this new opponent falls into. 

 

 

Figure 1: Diagram of the complete learning process used in the Classified 
Counter Strategy Selection algorithm 
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Classified counter strategy selection can be efficiently computed in a negligible amount of time 
between each hand in a match.  After a hand is completed we analyze it and update the attributes 
in the opponent’s vector.  Following this update, we reclassify the opponent and employ the 
associated counter strategy against the opponent on the following hand.  This algorithm provides 
potential benefits for both of UCB1’s pitfalls: 

1. Convergence Rate: Early in the match, updates to the attribute vector will cause major 
fluctuations and strategy selection may be very erratic.  This is due to the size of the 
game tree, and the fact that a small number of hands simply don’t cover enough scenarios 
in a poker game to be useful.  However, as the match progresses, the attribute vector 
converges, as shown in figure 2 for varying simple opponent strategies.  Since the vector 
effectively converges, the counter strategy selected from hand to hand will remain 
constant.  Since the vector converges, strategy selection is guaranteed to converge. 
 

2. Non-Fixed Opponent Strategies: Due to the quick convergence rate of the algorithm, 
opponents that switch their strategy in the middle of the match will no longer be a 
problem.  In early experiments, we found that the attribute vector often converged in as 
little as 100 hands.  Knowing this, instead of using all hands in a match, we can instead 
only update the vector with the latest n hands, called windowing.  Now we can converge 
to the new attribute vector within n hands of the opponent’s strategy change.  

  
 

 
Figure 2: Convergence of the player attribute vectors for an agent that calls at 
every decision (red), is completely random (green), and one that uses an even 

probability distribution at each decision (blue) 
. 

Two machine learning algorithms were used in testing the opponent vector approach.  The first 
was a traditional K-Nearest Neighbor (KNN) implementation and the second was Thorsten 
Joachims’ implementation of a multiclass Support Vector Machine (SVM).  Early in testing we 
compared the SVM implementation and the KNN implementation against the UCB1 algorithm in 
order to get an idea of how the opponent vector classification approach would perform given the 
method of labeling.  Figure 3 shows an example of the early results that we obtained for the two 
approaches against a single opponent. The SVM algorithm often resulted in a poor performance 
when testing (likely due to over fitting the training data), leading to use of the KNN algorithm 
when labeling our opponent vector and picking a counter strategy.  A k value of 3 was selected for 
use in the KNN algorithm for similar reasons.  This provided quick convergence without 
degrading the selection performance. 
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Figure 3: Comparison of using KNN (red) for vs. SVM (blue). 

 

4 Experiment 

4.1 Experimental Setup 

A smaller, more manageable version of poker is called Rhode Island Holdem.  This variation uses 
one hole card and two community cards to form a three card poker hand.  Unlike No Limit Texas 
Holdem, Rhode Island Holdem is a limit poker game, meaning you must place bets in a specified 
increments rather than having the ability to risk all of your money at any point.  We performed our 
experiments on this smaller poker game, which serves as a great testing bed for the classified 
counter strategy selection algorithm.  Rhode Island Holdem gives us the ability to run the 
algorithm on a game which we can explicitly compute the entire game tree rather than worrying 
about the consequences of abstraction. 

All data for our experiments was generated in house specific for this project.  We wrote a 
collection of rule based agents, as well as some that used naïve attempts to exploit an opponent.  
These agents were divided into three categories. The first group is comprised of the counter 
strategies that the Classified Counter Strategy Selection agent and the UCB1 agent could select 
from. 

 

 
Training 1 Training 2 Training 3 Training 4 Training 5 Training 6 

Strategy 0 1.7956 2.4844 1.2402 0 0.7482 -0.3604 

Strategy 1 1.1564 2.1708 2.4608 0.3912 2.2836 -1.002 

Strategy 2 0.6624 4.9624 3.8628 -0.7542 4.0864 -1.864 

Strategy 3 1.5448 -0.3986 0.9318 0.8458 0.6798 -0.834 

Figure 4: Results of training matches between the agents in the training set and 
each of the strategies used in the strategy set.  The value shown is the number of 

betting units that the strategy won or lost on average per hand. 

 

The second group was used for training.  Each of these agents were matched against then agents in 
the first group to generate training vectors, as shown in figure 4.  The value provided is the 
average number of betting units won per hand, where the ante is considered one betting unit, pre 
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flop bets are two units, and post flop bets are four units.  We label the attribute vectors gathered 
for each training agent according to the associated strategy that had the highest average win rate 
against it.  For example, strategy 0 had the highest win rate against training agent 1, so the 
attribute vectors recorded for training agent 1 are labeled with class 0. 

The framework in which we execute our tests in is designed specifically for direct comparison of 
two strategies.  We can deal out an n handed match and save the cards dealt to reuse in future 
matches.  This allows us to test two different strategies against the same opponent without the 
randomness of the cards playing into the effect of the outcome.  Additionally, we can take two 
opponents and swap their seats such that they see an identical set of hands from the opposite view.  
Unlike a human opponent, who will retain knowledge of the hands played, we can clear out the 
memory of the agents and start fresh for each match.  This helps to measure whether one opponent 
is truly better than the other since they will play the same set of n hands from both positions. 

 

4.2 Evaluation 

The assumption made in our approach is that the attribute vector accurately summarizes an 
opponent strategy in such a way that we can select a counter strategy that performs well against a 
certain class of opponents.  We are sacrificing optimality in strategy selection for a more efficient 
convergence rate.  Generally, it is important to evaluate the performance of strategy selection on 
these three aspects: 
 

1. The rate the algorithm converges to a learned counter strategy given a new opponent 
2. The win rate before convergence 
3. The win rate after converging to a learned counter strategy 

Evaluation for these experiments is done by direct comparison with the UCB1 strategy selection 
algorithm, regardless of the actual net win/loss.  Specifically: we look to have a better average win 
rate against an opponent than what the UCB1 algorithm can achieve when both strategy selection 
algorithms are using the same set strategies on identical sets of poker hands. 

Theoretically, performance better than UCB1 can only be achieved by either selecting the optimal 
strategy quicker than UCB1 does or by choosing a strategy which has a net win over UCB1 before 
UCB1’s convergence which is larger than the net win UCB1 has over the suboptimal strategy after 
convergence.  Effectively, the longer the match, the more time we allow UCB1 to converge and 
ultimately perform better.  Since we can never beat UCB1 after converging, we must beat it in the 
first two aspects. 

 

4.3 Results 

Selecting the appropriate one of four counter strategies against an unknown opponent is critical in 
achieving the highest win rate you can.  Figure 5 shows an example match which the opponent 
attribute vector approach performed exceedingly well compared to the UCB1 algorithm.  The 
average win rate for the new approach was 0.08 betting units higher than that of the UCB1 
algorithm. 

Note that UCB1 never converged to an optimal strategy because the number of hands in the match 
was not large enough; however, you can see progress being made toward convergence as counter 
strategy 1 seems to have been picked by UCB1 at the 10000 hand mark.  The new approach 
quickly converged to use counter strategy 0, which may be a suboptimal choice.  By quickly 
converging to a relatively good strategy, we were able to achieve a higher win rate than that of 
UCB1. 
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Figure 5: Left: The net profit of the KNN classifying strategy selector over the 
UCB1 algorithm against one of the test agents.  Right: The strategy selection for 

each of those algorithms during that match. 

 

A problem previously identified with the UCB1 algorithm is the possibility of an opponent 
changing their strategy in the middle of the match, making the data gathered thus far nearly 
useless.  This is a critical technique for professional poker players to avoid exploitation, and one 
that should be emulated by artificial poker agents.  Figure 6 shows the result of a match between 
each strategy selection method and an agent that exhibits this behavior, changing its strategy every 
200 hands.  In addition to the standard classified counter strategy selection algorithm, an agent that 
uses windowing was matched up against this opponent.  Windowing allows the agent to recognize 
if an opponent changes their strategy by only using a certain number of recent hands to determine 
the counter strategy that is best to employ. 

 

 

Figure 6: Net win/loss of the three strategy selection algorithms against the 
varying threshold agent. 

 

As you can see, UCB1 did not fare well against this opponent, with an average loss of 0.05 units 
per hand.  The standard classified counter strategy selection algorithm performed worse, losing 
0.25 units per hand.  However, once windowing is used, we achieve an average win of about 0.1 
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units per hand.  This exemplifies the benefit of the new approach over UCB1.  We cannot 
implement a similar windowing feature in the baseline because of the extended convergence 
period.  If we converge to a strategy with UCB1 and the opponent suddenly switches to a new 
strategy, it will take an enormous number of hands before the algorithm converges to the new 
optimal counter strategy, and at that point it is likely that the opponent would have again switched. 

A table of win rates for both of the approaches is provided in figure 7.  Overall, the new approach 
outperformed UCB1 in 64% of the matches, with an average profit over UCB1 of 0.052 units per 
hand. 

 

 
Test 1 Test 2 Test 3 Test 4 Test 5 

Classified Counter 
Strategy Selection -0.36165 0.1257 0.7471 0.03 -0.4534 

UCB1 -0.81405 0.0375 0.95575 -0.43645 0.29315 

Figure 7: Table of average win rates against various opponents.  Each match 
consisted of two 10000 hand matches where the opponents swap seats and clear 

memory halfway. 

 

The final experiment performed was a match between the baseline approach and the new opponent 
vector approach.  This match was performed just as all test matches were, duplicating the hands 
and swapping the hole cards of the two agents in the middle after clearing their memories.  The 
result of the match was a little surprising given the results of the previous tests.  The UCB1 
algorithm came out a clear winner over the opponent vector approach both with and without 
windowing.  This is likely because the UCB1 algorithm never converges to an optimal strategy in 
the limited number of hands, so its choice of strategy fluctuates nearly every hand.  This is a 
problem for the opponent vector classification and, as a result, the vector cannot converge, so the 
advantage is loss. 

 

 

Figure 8:  Net win for the opponent vector strategy selection algorithm when 
playing against the UCB1 strategy selection algorithm. 
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5 Future Work 

With the promising results from Rhode Island Holdem, we can make the necessary changes to 
allow the algorithm to be run in a No Limit Texas Holdem environment.  This will mainly involve 
reconstructing the opponent vectors to include attributes specific to that game, as well as 
developing more rule based agents and counter strategies specific to No Limit Texas Holdem. 

The result from the match between the UCB1 agent and the classified counter strategy selection 
agent was eye-opening, and warrants further investigation when employed in the No Limit Texas 
Holdem game.  Since many of the top tier implementations use the UCB1 algorithm, this approach 
must be robust enough to perform well against that algorithm. 

We feel that the results found here will closely match the results we will find when testing our 
algorithms on No Limit Texas Holdem, resulting in an agent comparable to those who competed 
in the 2010 AAAI Poker Competition. 

 

6 Conclusion 

Classified counter strategy selection shows some promising results when compared to the baseline 
UCB1 method.  For many of the test cases, we found that the UCB1 algorithm had a lower win 
rate due to the amount of time it took to converge to the optimal result.  In matches where we 
quickly find the optimal strategy, the opponent attribute vector approach outperforms the UCB1 
algorithm.  Using the opponent vector we achieve convergence quickly; however, the algorithm 
can miss the mark and choose a suboptimal strategy, occasionally resulting in a lower win rate in 
certain matches. 

 

Glossary of Poker Terms 

Action: The opportunity to check, call, bet/raise, or fold. 

All-in : When a player bets the amount of chips he/she has remaining. 

Ante: A forced bet that all players must place before being dealt into a hand. 

Card Rank: The numerical value of the card (2-10) or the title jack, queen, king, and ace. 

Check: To pass the action to the opponent without betting. 

Community Cards: The cards made available for all players to use. 

Heads-up Play: A one-on-one poker game. 

Hole Card(s): The card(s) dealt to each player that only the player can see. 

Flop: The first community card(s) dealt after the conclusion of the first round of betting.  

Pot: The total amount of chips bet by all player during a hand. 

River: The final community card dealt. 

Showdown: After the final round of betting, it is when both players reveal their hands to determine 
the winner. 

Turn: The community card that follows the flop. 
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