Winning Opponent Counter Strategy
Selection in Holdem Poker

Nathan Lloyd
Department of Computer Science
Cornell University
Ithaca, NY 14853
nslé@cornell.edu

Abstract

The game of poker presents an interesting and @mpioblem for game
theorists and researchers in machine learning. reBuwork on the subject
focuses on how to develop optimal counter straggidten referring to the
Upper Confidence Bounds (UCB1) algorithm to det@enwhich of these
counter strategies is optimal for an unknown opptneWe present a new
method for taking a learned set of counter strategind selecting a winning
strategy to employ against an unknown opponent.

1 Introduction

In 2003, a previously unknown man named Chris Momalker qualified for the $10000 World
Series of Poker main event in a $40 qualifier taamant, and went on to win the biggest prize in
poker, sparking an explosion in the popularityhaf game. In the academic world of game theory,
artificial intelligence, and machine learning, thgmited an interest in a new research area:
artificially intelligent poker agents.

The most popular variant of poker played today @sLiinit Texas Holdem. In this variation, each
player is dealt two hole cards and five cards taltare used as community cards which each
player can use to try to make the best five carkepdand. Due to the number of betting
possibilities open to players at every decisior,dlhowth of the extensive game tree for No Limit
Texas Holdem is astronomical, easily swelling terol® nodes.

This has created a flurry of interest among re$eas; as nobody can yet claim to have solved
poker. Solving the complex game is a matter oflmiomg a collection of known strategies with a

method of selecting a winning strategy to emplogiast an unknown opponent to maximize your
net money won.

Extensive research has been done on the calculatioptimal counter strategies in a relatively
small amount of time; it is the second segmenthefgroblem that is of particular interest. Given
a collection of optimal counter strategies for kmowiixed strategy opponents, how can we
efficiently select the strategy to employ agaimstiaknown opponent during a live match?

2 Previous Work

Much of the current literature on artificial pokeesearch focuses on counter strategy
development, while the method of selecting whictategy to employ against an unknown

opponent is often not the topic of discussion. $élection algorithm often used by entrants in the
AAAI Poker Competition is the UCB1 algorithm. [IYCB1 computes upper confidence bounds
for each strategy as a function of the average ytagnd the number of times that strategy has

1



been used. The equation is shown below, whgisetike average payout for strategy j, n is thal tot
number of hands played, andsithe number of hands played using strategy j.

. argmax | 2 In(n)
Strategy = ] X+ Q)

]

The benefit of the UCB1 algorithm is that it is guateed to converge to the optimal strategy in
your strategy set. If a Nash Equilibrium stratéginown, after convergence you will never have
a losing strategy. However, there are two majdfalis in the UCB1 algorithm as applied to
poker. First, there is no bound on the converggreed. A number of factors contribute to the
convergence rate, including the number of countestegies in your set and the unknown
opponent’s strategy. Secondly, UCB1 assumesltieabpponent’s strategy is fixed at all times. It
is easily exploited if the opponent switches itatetgy in the middle of a match. For example, if
one agent uses UCB1 converges to the optimal costregegy after 50000 hands and continues
to play that strategy only, the opponent can switilstrategy at hand 60,000 and the agent using
UCB1 may never recover from this switch.

3 Classified Counter Strategy Selection

Given these deficiencies in the UCBL1 algorithm, developed a method of selecting a counter
strategy that sacrifices optimality for efficienéy convergence. This new approach, called
Classified Counter Strategy Selection, uses a sigser learning algorithm to select the most

appropriate strategy based on the attributes thatemup a poker player. These attributes
populate a vector of well known poker statisticSome examples of attributes contained in this
vector are: VPIP, the percentage of hands the plaglentarily put extra money in the pot before

the flop; PFR, the percentage of hands the plajised before the flop; and the aggression factor,
a numerical measure of how aggressive a playeAlkattributes are normalized to be a decimal

value between 0 and 1.

Each counter strategy in our set is associated aviibel in our learning algorithm. To train our
classifier, we take unknown opponents whom we fzavextensive number of hands recorded and
solve for the expected value of playing each of @uunter strategies. The label of the counter
strategy with the largest expected value is thellai® put on that opponent’s attribute vector.
These attribute vectors effectively describe tlessts of opponents that each counter strategy is
effective against rather than associating eachteowtrategy with a specific opponent. During a
match with an unknown player, we choose the cousttategy which best exploits the class of
player we believe this new opponent falls into.

Creating the training vectors Game Play Loop
Training @ Redassify
Agent1 Agentn Opponent
=l o N
(o] [ s
Update Vector

EE F| W P

P argmex _ e A
Labellv;; ) = . EV{Match(i,j))
Vi j X

Figure 1: Diagram of the complete learning proaeses in the Classified
Counter Strategy Selection algorithm

2



Classified counter strategy selection can be effity computed in a negligible amount of time
between each hand in a match. After a hand is Eethwe analyze it and update the attributes
in the opponent’s vector. Following this updates veclassify the opponent and employ the
associated counter strategy against the opponetiteofollowing hand. This algorithm provides
potential benefits for both of UCB1's pitfalls:

1. Convergence Rate: Early in the match, updates to the attribute meeutill cause major
fluctuations and strategy selection may be vergterr This is due to the size of the
game tree, and the fact that a small number of$aimdply don’t cover enough scenarios
in a poker game to be useful. However, as the mptogresses, the attribute vector
converges, as shown in figure 2 for varying simgg@onent strategies. Since the vector
effectively converges, the counter strategy setedtem hand to hand will remain
constant. Since the vector converges, strateggtsah is guaranteed to converge.

2. Non-Fixed Opponent Strategies: Due to the quick convergence rate of the algorjth
opponents that switch their strategy in the midolethe match will no longer be a
problem. In early experiments, we found that thigbaite vector often converged in as
little as 100 hands. Knowing this, instead of gsatl hands in a match, we can instead
only update the vector with the latest n handdedakdindowing. Now we can converge
to the new attribute vector within n hands of tippanent’s strategy change.

Convergence of player attribute vectors in Rhode Island Holderm

0
08H
0.7 K

0.6

I,

0.5H

(gl

[l

0.4

03F

02r ].\ B
&yw&)\ A fhn, o
X : A A O D O NP B e S P oo
0 10 20 30 40 50 G0 70 a0 a0 100
Hand Murnber

01F

Figure 2:Convergence of the player attribute vectors foagent that calls at
every decision (red), is completely random (greanyl one that uses an even
probability distribution at each decision (blue)

Two machine learning algorithms were used in tgsthe opponent vector approach. The first
was a traditional K-Nearest Neighbor (KNN) implert&tion and the second was Thorsten
Joachims’ implementation of a multiclass Supporttde Machine (SVM). Early in testing we
compared the SVM implementation and the KNN impletagon against the UCB1 algorithm in
order to get an idea of how the opponent vectasdiaation approach would perform given the
method of labeling. Figure 3 shows an examplehefdarly results that we obtained for the two
approaches against a single opponent. The SVM idigomften resulted in a poor performance
when testing (likely due to over fitting the traigi data), leading to use of the KNN algorithm
when labeling our opponent vector and picking anteustrategy. A k value of 3 was selected for
use in the KNN algorithm for similar reasons. Thisovided quick convergence without
degrading the selection performance.



w10t Comparizan of %M and KNM algarithms

Met Profit over UCB1

1
0.8 1

1.4
Hand Murnber 4

2 I I I
0

1
0Z 04 0B 1.2

Figure 3: Comparison of using KNN (red) for vs. S\(Mue).

4 Experiment
4.1

A smaller, more manageable version of poker isedaRhode Island Holdem. This variation uses
one hole card and two community cards to form adlward poker hand. Unlike No Limit Texas
Holdem, Rhode Island Holdem is a limit poker gameaning you must place bets in a specified
increments rather than having the ability to riBloAyour money at any point. We performed our
experiments on this smaller poker game, which seas a great testing bed for the classified
counter strategy selection algorithm. Rhode Isl&tmdem gives us the ability to run the

algorithm on a game which we can explicitly comptite entire game tree rather than worrying
about the consequences of abstraction.

Experimental Setup

All data for our experiments was generated in hosgecific for this project. We wrote a
collection of rule based agents, as well as soraeuked naive attempts to exploit an opponent.
These agents were divided into three categories. firt group is comprised of the counter
strategies that the Classified Counter Strateggciien agent and the UCB1 agent could select
from.

Training 1| Training 2| Training3 Training4 Traigi® | Training 6
Strategy 0| 1.7956 2.4844 1.2402 0 0.7482| -0.3604
Strategy 1 1.1564 2.1708 2.4604 0.3912 2.2836 21.0
Strategy 2 0.6624 | 4.9624 3.8628 -0.7542 4.0864 -1.864
Strategy 3 1.5448 -0.3986 0.9318§ 0.8458 0.6798 -0.834

Figure 4:Results of training matches between the agentseitraining set and
each of the strategies used in the strategy de&. v@lue shown is the number of
betting units that the strategy won or lost on agerper hand.

The second group was used for training. Eacheddtagents were matched against then agents in
the first group to generate training vectors, aswshin figure 4. The value provided is the
average number of betting units won per hand, whegeante is considered one betting unit, pre



flop bets are two units, and post flop bets arg fmits. We label the attribute vectors gathered
for each training agent according to the associatetegy that had the highest average win rate
against it. For example, strategy 0 had the higlkés rate against training agent 1, so the

attribute vectors recorded for training agent 1labeled with class 0.

The framework in which we execute our tests indsigned specifically for direct comparison of
two strategies. We can deal out an n handed natdhsave the cards dealt to reuse in future
matches. This allows us to test two differenttegies against the same opponent without the
randomness of the cards playing into the effedthefoutcome. Additionally, we can take two
opponents and swap their seats such that theynseetical set of hands from the opposite view.
Unlike a human opponent, who will retain knowledifehe hands played, we can clear out the
memory of the agents and start fresh for each mattis helps to measure whether one opponent
is truly better than the other since they will ptag same set of n hands from both positions.

4.2 Evaluation

The assumption made in our approach is that thébatt vector accurately summarizes an
opponent strategy in such a way that we can saleounter strategy that performs well against a
certain class of opponents. We are sacrificingnugdity in strategy selection for a more efficient
convergence rate. Generally, it is important taleate the performance of strategy selection on
these three aspects:

1. The rate the algorithm converges to a learned eowtitategy given a new opponent
2. The win rate before convergence
3. The win rate after converging to a learned cousti@tegy

Evaluation for these experiments is done by dioechparison with the UCB1 strategy selection
algorithm, regardless of the actual net win/loSpecifically: we look to have a better average win
rate against an opponent than what the UCB1 alguoritan achieve when both strategy selection
algorithms are using the same set strategies mtiddé sets of poker hands.

Theoretically, performance better than UCB1 cary @& achieved by either selecting the optimal
strategy quicker than UCB1 does or by choosingatesiy which has a net win over UCB1 before
UCBZ1'’s convergence which is larger than the net@B1 has over the suboptimal strategy after
convergence. Effectively, the longer the matchk, itiore time we allow UCB1 to converge and
ultimately perform better. Since we can never h#aB1 after converging, we must beat it in the
first two aspects.

4.3 Results

Selecting the appropriate one of four counter agfias against an unknown opponent is critical in
achieving the highest win rate you can. Figurehdws an example match which the opponent
attribute vector approach performed exceedinglyl weimpared to the UCB1 algorithm. The
average win rate for the new approach was 0.08ngetinits higher than that of the UCB1
algorithm.

Note that UCB1 never converged to an optimal sisateecause the number of hands in the match
was not large enough; however, you can see progeieg made toward convergence as counter
strategy 1 seems to have been picked by UCB1 al®@0 hand mark. The new approach
quickly converged to use counter strategy O, whithy be a suboptimal choice. By quickly
converging to a relatively good strategy, we webke do achieve a higher win rate than that of
uCB1.



KN profit over UGB against test agent 3 Counter Strategy Selection for UCET and KNN
T T T T T T T s T T

3 s ok spem o

2 KNN
= UCB1

[} TP — wcomx  me % 0w

12000

10000 -

251

8000

6000

4000 -

Iet Profit over UCE1

Counter Strategy Selection
&

2000 -

s

b L . L : : 1 ! L ! T e e e
2DDDD 02 04 06 08 1 12 14 16 18 2 0 1000 2000 3000 4000 S000 6000 7000 8000 5000 10000
Hand Mumber w10t Hand Mumber

Figure 5:Left: The net profit of the KNN classifying strategelector over the
UCB1 algorithm against one of the test agents.hRifhe strategy selection for
each of those algorithms during that match.

A problem previously identified with the UCB1 algbm is the possibility of an opponent
changing their strategy in the middle of the matetaking the data gathered thus far nearly
useless. This is a critical technique for profasal poker players to avoid exploitation, and one
that should be emulated by artificial poker agerfggure 6 shows the result of a match between
each strategy selection method and an agent thdiiexthis behavior, changing its strategy every
200 hands. In addition to the standard classifmehter strategy selection algorithm, an agent that
uses windowing was matched up against this opponatimdowing allows the agent to recognize
if an opponent changes their strategy by only usigrtain number of recent hands to determine
the counter strategy that is best to employ.

« 10" Comparitive results of match against varying strategy agent

— UCE1
KM
— KNN with Windowing

Met winfloss

1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 B000 7000 8000 9000 10000
Hand Mumber

Figure 6: Net win/loss of the three strategy séecalgorithms against the
varying threshold agent.

As you can see, UCB1 did not fare well against tiiponent, with an average loss of 0.05 units
per hand. The standard classified counter straseggction algorithm performed worse, losing
0.25 units per hand. However, once windowing isdysve achieve an average win of about 0.1

6



units per hand. This exemplifies the benefit o tew approach over UCB1. We cannot
implement a similar windowing feature in the baselibecause of the extended convergence
period. If we converge to a strategy with UCB1 dhe opponent suddenly switches to a new
strategy, it will take an enormous number of hahdfore the algorithm converges to the new
optimal counter strategy, and at that point itkelly that the opponent would have again switched.

A table of win rates for both of the approachegrisvided in figure 7. Overall, the new approach
outperformed UCB1 in 64% of the matches, with aarage profit over UCB1 of 0.052 units per

hand.

Test 1 Test 2 Test 3 Test 4 Test b

Classified Counter
Strategy Selection -0.36165 0.1257 0.7471 0.03 -0.4534
UCB1 -0.81405 0.0375| 0.95575 | -0.43645| 0.29315

Figure 7:Table of average win rates against various oppsndaach match
consisted of two 10000 hand matches where the eppsiswap seats and clear
memory halfway.

The final experiment performed was a match betwkerbaseline approach and the new opponent
vector approach. This match was performed justliaest matches were, duplicating the hands
and swapping the hole cards of the two agentseémitddle after clearing their memories. The
result of the match was a little surprising givéwe tresults of the previous tests. The UCB1
algorithm came out a clear winner over the oppon@utor approach both with and without
windowing. This is likely because the UCB1 algamit never converges to an optimal strategy in
the limited number of hands, so its choice of sggtfluctuates nearly every hand. This is a
problem for the opponent vector classification aasla result, the vector cannot converge, so the

advantage is loss.

« 10t Result of Matches against varying threshold test agent

— KMNN

— KN with WWindowing

Met winfloss

_5 1 1 1 1 1 1 1 1 1
0 02 04 06 08 1 1.2 1.4 16 1.8 2

Hand Mumber " 1D4

Figure 8: Net win for the opponent vector strategy selectitgorithm when
playing against the UCB1 strategy selection alanmit



5 FutureWork

With the promising results from Rhode Island Holdeme can make the necessary changes to
allow the algorithm to be run in a No Limit Texasltdlem environment. This will mainly involve
reconstructing the opponent vectors to includeibattes specific to that game, as well as
developing more rule based agents and counteegteatspecific to No Limit Texas Holdem.

The result from the match between the UCB1 agedtthe classified counter strategy selection
agent was eye-opening, and warrants further inyatstin when employed in the No Limit Texas
Holdem game. Since many of the top tier implemtgonia use the UCB1 algorithm, this approach
must be robust enough to perform well againstalgrithm.

We feel that the results found here will closelytechathe results we will find when testing our
algorithms on No Limit Texas Holdem, resulting im agent comparable to those who competed
in the 2010 AAAI Poker Competition.

6 Conclusion

Classified counter strategy selection shows soramiging results when compared to the baseline
UCB1 method. For many of the test cases, we fabatthe UCB1 algorithm had a lower win
rate due to the amount of time it took to convetgéhe optimal result. In matches where we
quickly find the optimal strategy, the opponentihtite vector approach outperforms the UCB1
algorithm. Using the opponent vector we achieveveogence quickly; however, the algorithm
can miss the mark and choose a suboptimal strateggsionally resulting in a lower win rate in
certain matches.

Glossary of Poker Terms

Action: The opportunity to check, call, bet/raise, odfol

All-in : When a player bets the amount of chips he/shedmaining.

Ante: A forced bet that all players must place befamg dealt into a hand.

Card RankThe numerical value of the card (2-10) or thie fiick, queen, king, and ace.
Check To pass the action to the opponent without bgttin

Community CardsThe cards made available for all players to use.

Heads-up PlayA one-on-one poker game.

Hole Card(s) The card(s) dealt to each player that only tlaggl can see.

Flop: The first community card(s) dealt after the coais@n of the first round of betting.
Pot The total amount of chips bet by all player dgrinhand.

River. The final community card dealt.

Showdown After the final round of betting, it is when bagthayers reveal their hands to determine
the winner.

Turn: The community card that follows the flop.



References

[1] Michael Bradley JohansorRobust Srategies and Counter-Srategies: Building a Champion Level
Computer Player. 2007. University of Alberta.

[2] Darse Billings.Computer Poker. 1995. University of Alberta.

[3] Michael Johanson, Martin Zinkevich, and MichBewling. Computing Robust Counter-Strategies.
2007. University of Alberta.

[4] Thorston Joachim&VM™9aS pMylti class support vector machine implementation
http://www.cs.cornell.edu/People/tj/svm_Light/svm_multiclass.html



