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Outline:
» What is the true (prediction) error of classification rule h?
« How to bound the true error given the training error?
« Finite hypothesis space and zero training error
« Finite hypothesis space and non-zero training error
« Infinite hypothesis spaces: VC-Dimension and Growth Function
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Goal:
o Learner uses training set to find classifier with low prediction error.

Learning Classifiers from Examples (Scenario)

Scenario:
« Generator: Generates descriptions x according to distribution P(x).

» Teacher: Assigns a value y to each description x based on distribution
Py|x).

Given:
.. > > > > N
o Training examples (x1,y)), ..., (xn,y,) ~P(x,y) xie R yie {L-1}

« Set H of classification rules / (hypotheses) that map descriptions x to
values y (h;;c -y).

Goal of Learner:

» Classification rule & from H that classifies new examples (again from
P(x,y)) with low error rate!

P(h(x) %) = [JAGKE) #)dP(, y) = Errp(h)

Principle: Empirical Risk Minimization (ERM)

Learning Principle:
Find the decision rule #° € H for which the training error is minimal:

o —

= argmin, . A Errg(h)}

Training Error:

Errg(h) = %aA(yi;th(;i))

i=1

==> Number of misclassifications on training examples.

Central Problem of Statistical Learning Theory:

When does a low training error lead to a low generalization error?




Sources of Variation

Learning Task:

« Generator: Generates descriptions * according to distribution P(;c).
. .. > >

« Teacher: Assigns a value y to each description x based on P(y|x).

=> Learning Task: P(%,y) = P(y|¥)P(¥)

Process:

« Select task P(;, ¥)

« Training sample S (depends on P(;, )

« Train learning algorithm A (e.g. randomized search)

« Test sample V (depends on P(;c, )

 Apply classification rule h (e.g. randomized prediction)

What is the true error of classification rule h?

Includes variation from different test sets.

Problem Setting:

« given rule h

« given (independent) test sample § = (;1, Vs oo (;Ck, ») of size k

estimate

P(h(x) %) = AGE) #0)dP(.y) = Errp(h)

Approach: measure error of h on test set

Erry(h) = 1 & A # )
i=1

Binomial Distribution
The probability of observing x heads in a sample of n independent coin
tosses, when the probability of heads is p in each toss, is

POX=xlpn) = o (1= p)"

Confidence interval:

Given x observed heads, with at leat 95% confidence the true value of p
fulfills

P(X=x|p,n)20.025 and P(X<x|p,n)=0.025

Cross-Validation Estimation

Given:
« training set S of size n

Method:

« partition S into m subsets of equal size

o forifrom 1 tom
« train learner on all subsets except the i’ th
« test learner on i’ th subset
« record error rates on test set

=> Result: average over recorded error rates
Bias of estimate: see leave-one-out

Warning: Test sets are independent, but not the training sets!
=> no strictly valid hypothesis test is known for general learning
algorithms (see [Dietterich/97])




Psychic Game

« [ guess a 4 bit code
« You all guess a 4 bit code

=> The student who guesses my code clearly has telepathic abilities -
right!?

How can You Convince Me of Your Psychic
Abilities?
Setting:
o 1 bits
« |H| players

Question: For which » and |H| is prediction of zero-error player
significantly different from random (p = 0.5) with probability 1 — §?

=> Hypothesis test for

P(h,correctv ...v h|H|correct, allnonpsychic) <d

or

P(3he H:Err(h) =0,Vhe H;Errp(h) =0.5)<d

PAC Learning

Definition:

« C = class of concepts ¢;X — {1, -1} (functions to be learned)

« H = class of hypotheses ;X — {1, -1} (functions used by learner A)
« S = training set (of size n)

« ¢ = desired error rate of learned hypothesis

« § = probability, with which the learner A is allowed to fail

C is PAC-learnable by Algorithm A using H and »n examples, if

P(Err(h ) <€)= (1- 8)

forall ce C, ¢, §, and P(X) so that A runs in polynomial time

dependent on ¢, §, the size of the training examples and the size of the

concepts.

=> only polynomially many training examples allowed.

Case: Finite H, Zero Error

« The hypothesis space H is finite
o There is always some h with zero training error (A returns one such h)
« Probability that a (single) h with Err,(h) 2 ¢ has training error of zero

(1-#)"
« Probability that there exists h in H with Err,(h) =€ that has training
error of zero

P(3he HErr(h) =0, Errp(h)>e) <|H|(1 - )" <|Hle "




Case: Finite H, Non-Zero Error

Goal:

P(|Errg(hys) — Errp(hys)| <€)= (1- 8)

P(supH|ErrS(hi) - ErrS(hl.)| <g)=(1-9)

« Probability that for a fixed h, training error and test error differ by
more than ¢ (Hoeffding / Chernoff Bound)
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« Probability over all h in H: union bound => multiply by [H|

Case: Infinite H

« union bound does no longer work.
« maybe not all hypotheses are really different?!

How Many Dichotomies for Fixed Sample?

« Sample S of size n
» Hypothesis class H

M,(8) = {(h(1), h(x2), ... h(xn))ih € H}

Definition: H shatters S, if|I1,,(5)| = 2" (i.e. hypotheses from H can
split S in all possible ways).

Vapnik/Chervonenkis Dimension

Definition: The VC-dimension of H is equal to the maximal number d
of examples that can be split into two sets in all 2 ways using
functions from H (shattering).
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Linear Classifiers

Rules of the Form: weight vector w, threshold »
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N
> >
> > e 27
h(X)—sign[aw,-;Hb}_ 1 if g wixitb>0
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Geometric Interpretation (Hyperplane):
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VC-Dimension of Hyperplanes in R?

« Three points in %* can be shattered with hyperplanes.

\

« Four points cannot be shattered.

=> Hyperplanes in %> -> VCdim=3
General: Hyperplanes in %" -> VCdim=N+1

Error Bound

Question: After n training examples, how close is the training error to
the true error?

With probablility n it holds for all A e H:
Errp(h) — Errg(h) <®(d, n,m)
ddm2 10— 1)
d(d,n) =

n

on number of training examples
od VC-dimension of hypothesis space H

== Errp(h) < Errg(h) +®(d,n,m)

SVM Motivation: Structural Risk Minimization

Errp(h;) < Errg(h;) + ®(VCdim(H),n, M)

Idea: Structure on
hypothesis space.

Goal: Minimize upper bound on
true error rate.
A

ErrP(hl.)
O(VCdim(H),n,m)

- Errg(h;)

L

opt VCdim(H)




