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Outline:
•What is the true (prediction) error of classification rule h?
•How to bound the true error given the training error?
• Finite hypothesis space and zero training error
• Finite hypothesis space and non-zero training error
• Infinite hypothesis spaces: VC-Dimension and Growth Function

Learning Classifiers

Goal:
• Learner uses training set to find classifier with low prediction error.

Training Set New Examples

Learner Classifier

Real-World
Process

Learning Classifiers from Examples (Scenario)

Scenario:
•Generator: Generates descriptions according to distribution .
• Teacher: Assigns a value to each description based on distribution

.

Given:
• Training examples
• Set H of classification rules h (hypotheses) that map descriptions to
values ( ).

Goal of Learner:
•Classification rule h from H that classifies new examples (again from

) with low error rate!
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Principle: Empirical Risk Minimization (ERM)

Learning Principle:
Find the decision rule for which the training error is minimal:

Training Error:

==> Number of misclassifications on training examples.
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Central Problem of Statistical Learning Theory:
When does a low training error lead to a low generalization error?



Sources of Variation

Learning Task:
•Generator: Generates descriptions according to distribution .
• Teacher: Assigns a value to each description based on .

=> Learning Task:

Process:
• Select task
• Training sample S (depends on )
• Train learning algorithm A (e.g. randomized search)
• Test sample V (depends on )
•Apply classification rule h (e.g. randomized prediction)
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What is the true error of classification rule h?

Includes variation from different test sets.

Problem Setting:
• given rule h
• given (independent) test sample of size k

estimate

Approach: measure error of h on test set
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Binomial Distribution

The probability of observing x heads in a sample of n independent coin
tosses, when the probability of heads is p in each toss, is

Confidence interval:

Given x observed heads, with at leat 95% confidence the true value of p
fulfills
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Cross-Validation Estimation

Given:
• training set S of size n

Method:
• partition S into m subsets of equal size
• for i from 1 to m

• train learner on all subsets except the i’ th
• test learner on i’ th subset
• record error rates on test set

=> Result: average over recorded error rates

Bias of estimate: see leave-one-out

Warning: Test sets are independent, but not the training sets!
=> no strictly valid hypothesis test is known for general learning
algorithms (see [Dietterich/97])



Psychic Game

• I guess a 4 bit code
•You all guess a 4 bit code

=> The student who guesses my code clearly has telepathic abilities -
right!?

How can You Convince Me of Your Psychic
Abilities?

Setting:
• n bits
• |H| players
Question: For which n and |H| is prediction of zero-error player
significantly different from random ( ) with probability ?

=> Hypothesis test for

or
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PAC Learning

Definition:
•C = class of concepts (functions to be learned)
•H = class of hypotheses (functions used by learner A)
• S = training set (of size n)
• = desired error rate of learned hypothesis
• = probability, with which the learner A is allowed to fail

C is PAC-learnable by Algorithm A using H and n examples, if

for all , , , and P(X) so that A runs in polynomial time
dependent on , , the size of the training examples and the size of the
concepts.

=> only polynomially many training examples allowed.
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Case: Finite H, Zero Error

• The hypothesis space H is finite
• There is always some h with zero training error (A returns one such h)
• Probability that a (single) h with has training error of zero

• Probability that there exists h in H with that has training
error of zero
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Case: Finite H, Non-Zero Error

Goal:

<=

• Probability that for a fixed h, training error and test error differ by
more than (Hoeffding / Chernoff Bound)

• Probability over all h in H: union bound => multiply by |H|
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Case: Infinite H

• union bound does no longer work.
•maybe not all hypotheses are really different?!

How Many Dichotomies for Fixed Sample?

• Sample S of size n
•Hypothesis class H

Definition: H shatters S, if (i.e. hypotheses from H can
split S in all possible ways).
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Vapnik/Chervonenkis Dimension

Definition: The VC-dimension of H is equal to the maximal number d
of examples that can be split into two sets in all 2d ways using
functions from H (shattering).

Growth function : For all S
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Linear Classifiers

Rules of the Form: weight vector , threshold

Geometric Interpretation (Hyperplane):
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VC-Dimension of Hyperplanes in

• Three points in can be shattered with hyperplanes.

• Four points cannot be shattered.

=> Hyperplanes in -> VCdim=3
General: Hyperplanes in -> VCdim=N+1

ℜ2

ℜ2

ℜ2

ℜN

Error Bound

Question: After n training examples, how close is the training error to
the true error?

With probablility it holds for all :

• n number of training examples
• d VC-dimension of hypothesis space H
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SVMMotivation: Structural Risk Minimization

Idea: Structure on
hypothesis space.

Goal:Minimize upper bound on
true error rate.
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