Optimal Hyperplanes

Outline:

- What is an optimal hyperplane / Support Vector Machine?
- Hard-margin separation.
- What to do, if the training set is not linearly separable?
- Soft-margin separation.

Optimal Hyperplane Linear Hard-Margin Support Vector Machine

Assumption: The training examples are linearly separable.

Hard-Margin Separation

Goal: Find hyperplane with the largest distance to closest examples.

Hard Margin Optimization Problem (Primal): minimize $J(\vec{w}, b) = \frac{1}{2}\vec{w}\cdot\vec{w}$

s. t. $y_i[\vec{w} \cdot \vec{x}_i + b] \ge 1$

Support Vectors: Examples with minimal distance.

Non-Separable Training Samples

For some training samples there is no separating hyperplane!Complete separation is suboptimal for many training samples!

=> minimize trade-off between margin and training error.

Soft-Margin Separation

Idea: Maximize margin and minimize training error simultanously.

Hard Margin: minimize $J(\vec{w}, b) = \frac{1}{2}\vec{w}\cdot\vec{w}$ s. t. $y_i[\vec{w}\cdot\vec{x}_i+b] \ge 1$

Soft Margin:
minimize
$$J(\vec{w}, b, \vec{\xi}) = \frac{1}{2}\vec{w}\cdot\vec{w} + C\frac{n}{i=1}\xi_i$$

s. t. $y_i[\vec{w}\cdot\vec{x}_i+b] \ge 1 - \xi_i$ and $\xi_i \ge 0$

- slack variable ξ_i measures by how much example (x_i, y_i) fails to achieve a target margin of δ .
- $\underline{\xi}_i$ is an upper bound on the number of training errors.
- C is a parameter that controls trade-off between margin and error.

Controlling Soft-Margin Separation

Soft Margin: minimize $P(\vec{w}, b, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \frac{n}{i=1} \xi_i$ s. t. $y_i [\vec{w} \cdot \vec{x}_i + b] \ge 1 - \xi_i$ and $\xi_i \ge 0$

• $\underline{\xi}_i$ is an upper bound on the number of training errors.

• C is a parameter that controls trade-off between margin and error.

Observation: Typically no local optima, but not necessarily...