CS5430 Homework 3: Reasoning about Certificates

General Instructions. You may work alone or with one other person from our class on this assignment. If you do work with somebody then form a group on CMS and submit a single set of solutions.

Note: You are strongly urged to work with a partner. Don't just split the work. You will learn more and the assignment will be easier to finish if you both work together on all problems. We will help you find a partner, if needed. In the past, the average grade given to a pair working together has been significantly higher than the average grade given to individuals working alone.

Due: October 8, 2021 11:59pm. No late assignments will be accepted.

Submit your solution using CMS. Prepare your solution as .pdf, as follows:

- Use 10 point or larger font.
- Submit each problem (as a separate file) into the correct CMS submission box for that problem.

Pointers to our required readings where information is given about inference rules for reasoning about logical formulae involving **says** and **sfor**:

- Slides 1-8 of Formal account of hierarchical certificate authorities
- Figure 9.3 (page 218), Figure 9.4 a and b (page 219), Figure 9.5 (page 222) in Credentials-based Authorization

Problem 1 (a). Consider a certificate chain

$$\langle K_2, N_2 \rangle k_1$$
, $\langle K_3, N_3 \rangle k_2$, $\langle K_4, N_4 \rangle k_3$

Suppose we have: K_1 **sfor** N_1 .

What additional trust assumptions (formulated using **says** and **sfor**) are required to support the conclusion: K_4 **sfor** N_4 ? Give the formal analysis to derive K_4 **sfor** N_4 by using your trust assumptions.

Problem 1 (b). In class, we have been considering certificate chains that are paths from the root to a leaf in a tree, where each node n_i of the tree is a certificate authority that stores a set $certs(n_i)$ of certificates signed by the k_i the private key of n_i . Each of these certificates $\langle N, K \rangle k_i$ corresponds to a formula

$$Trans(\langle N, K \rangle k_i) \stackrel{\text{def}}{=} K_i says K sfor N$$

So, we have that

$$\sigma_i \in certs(n_i)$$
 implies $Trans(\sigma_i) \in \omega(n_i)$

where ω (n_i) is the set of beliefs for node n_i .

Suppose --- instead of the tree --- we are given an arbitrary directed graph G, where there is at least one path from every node to every other node. Also, you may assume the following holds:

- (i) K_i **sfor** n_i holds for each node n_i in the case that n_i has no incoming edges and thus n_i could be the start of what we will call a *certificate path* in G,
- (ii) all trust assumptions that are needed to infer K_f sfor n_f where there is a certificate path in G that ends at a node n_q and that certificate path contains a certificate $\langle N_f, K_f \rangle k_q$

What property must the various belief sets $\omega(n)$ satisfy for all nodes n in this graph.

Problem 2. Some have argued that having *A* **sfor** *B* hold can be interpreted as saying "*B* **trusts** *A*". Do you agree or disagree with that interpretation? Justify your view by giving a mathematical argument involving beliefs that principals have.

Problem 3. The following inference rules assert that principals perform introspection in forming their sets of beliefs.

$$\frac{A \operatorname{says} (A \operatorname{says} P)}{A \operatorname{says} P} \qquad \frac{A \operatorname{says} P}{A \operatorname{says} (A \operatorname{says} P)}$$

In order to define common situations, like Alice typing into her keyboard or a wire carrying a message from one machine to another, we might define a compound principal: *A* **quoting** *B*:

A quoting B says $P \stackrel{\text{def}}{=} A$ says B says P

What trust assumption(s) would allow the conclusion

Alice says login

from the formula

keyboard quoting Alice says login

Justify why that assumption suffices and is sensible.