Surfaces and solids

CS 4620 Lecture 19

Modeling in 3D

- Representing subsets of 3D space
 - volumes (3D subsets)
 - surfaces (2D subsets)
 - curves (ID subsets)
 - points (0D subsets)

Representing geometry

- In order of dimension...
- Points: trivial case
- Curves
 - normally use parametric representation
 - line—just a point and a vector (like ray in ray tracer)
 - polylines (approximation scheme for drawing)
 - more general curves: usually use splines
 - $\mathbf{p}(t)$ is from R to \mathbb{R}^3
 - **p** is defined by piecewise polynomial functions

Representing geometry

- Surfaces
 - this case starts to get interesting
 - implicit and parametric representations both useful
 - example: plane
 - implicit: vector from point perpendicular to normal
 - parametric: point plus scaled tangents
 - example: sphere
 - implicit: distance from center equals r
 - parametric: write out in spherical coordinates
 - messiness of parametric form not unusual

- Parametric spline surfaces
 - extrusions
 - surfaces of revolution
 - generalized cylinders
 - spline patches
- Pause for differential geometry review...
 - plane and space curves, tangent vectors
 - parametric surfaces, isolines, tangent vectors, normals

From curves to surfaces

- So far have discussed spline curves in 2D
 - it turns out that this already provides of the mathematical machinery for several ways of building curved surfaces
- Building surfaces from 2D curves
 - extrusions and surfaces of revolution
- Building surfaces from 2D and 3D curves
 - generalized swept surfaces
- Building surfaces from spline patches
 - generalizing spline curves to spline patches
- Also to think about: generating triangles

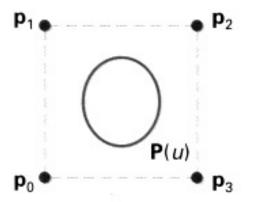
Extrusions

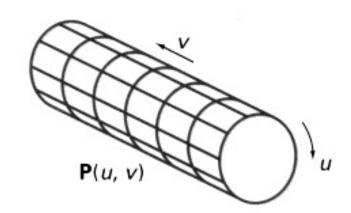
• Given a spline curve $C \in \mathbb{R}^2$, define $S \in \mathbb{R}^3$ by

$$S = C \times [a, b]$$

- This produces a "tube" with the given cross section
 - Circle: cylinder; "L": shelf bracket; "I": I beam
- It is parameterized by the spline t and the interval [a, b]

$$s(t,s) = [c_x(t), c_y(t), s]^T$$





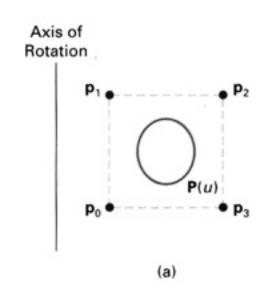
[Hearn & Baker]

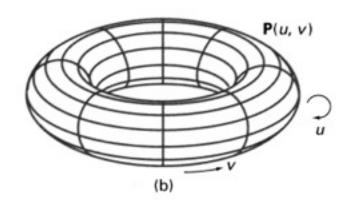
Surfaces of revolution

- Take a 2D curve and spin it around an axis
- Given curve c(t) in the plane, the surface is defined easily in cylindrical coordinates:

$$\mathbf{s}(t,s) = (r,\phi,z) = (c_x(t),s,c_y(t))$$

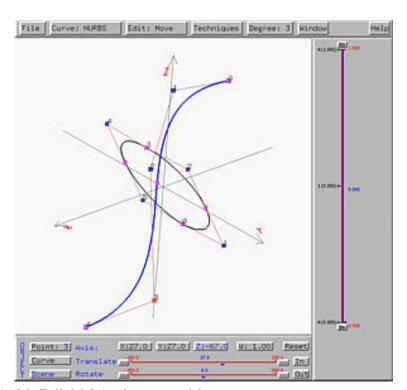
the torus is an example
 in which the curve c
 is a circle

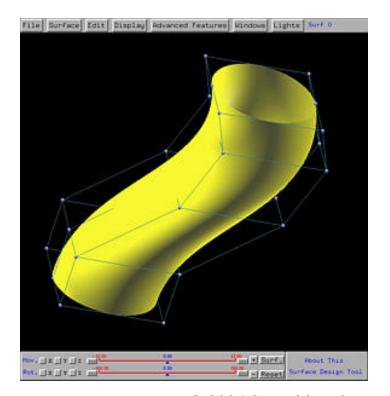




Swept surfaces

- Surface defined by a cross section moving along a spine
- Simple version: a single 3D curve for spine and a single
 2D curve for the cross section



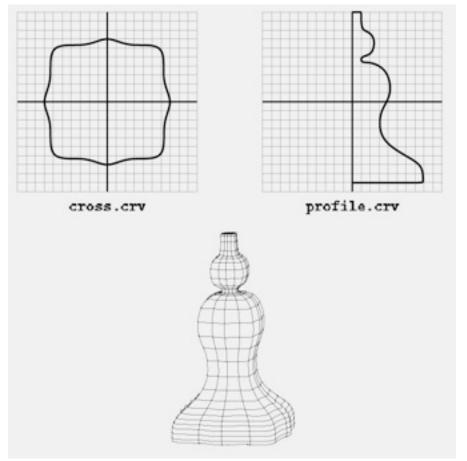


 $\overline{\Omega}$

[Snyder 1992]

Generalized cylinders

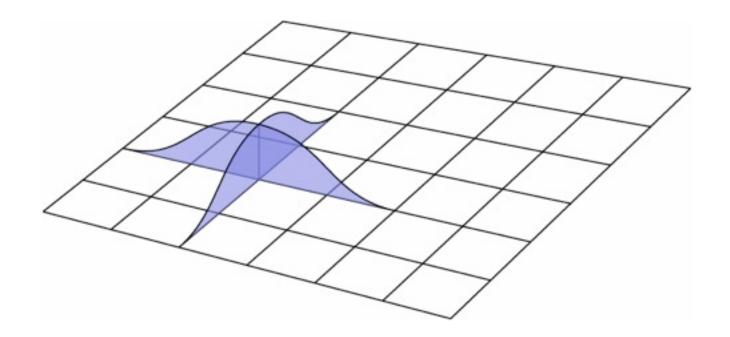
- General swept surfaces
 - varying radius
 - varying cross-section
 - curved axis



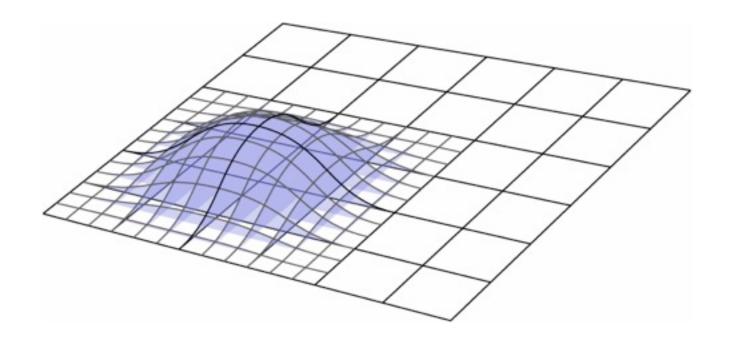
From curves to surface patches

- Curve was sum of weighted ID basis functions
- Surface is sum of weighted 2D basis functions
 - construct them as separable products of ID fns.
 - choice of different splines
 - spline type
 - order
 - closed/open (B-spline)

Separable product construction



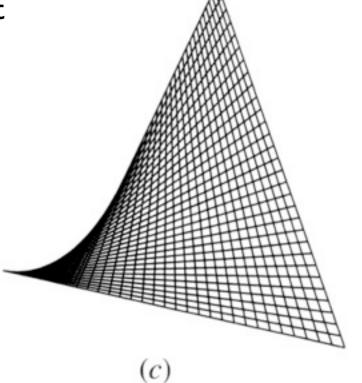
Separable product construction



Bilinear patch

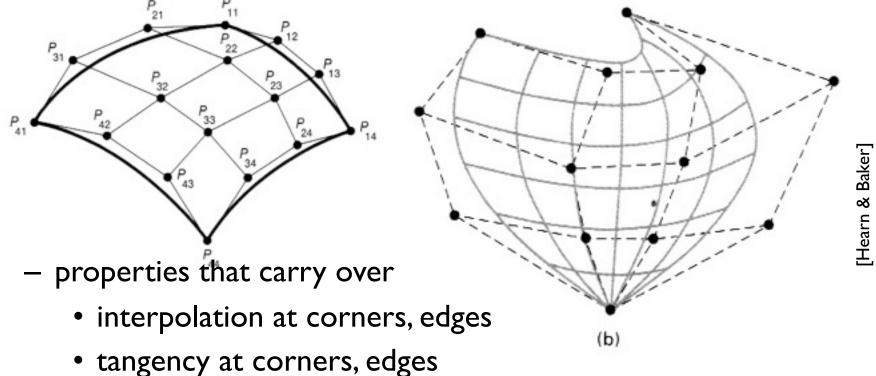
Simplest case: 4 points, cross product of two linear segments

- basis function is a 3D tent



Bicubic Bézier patch

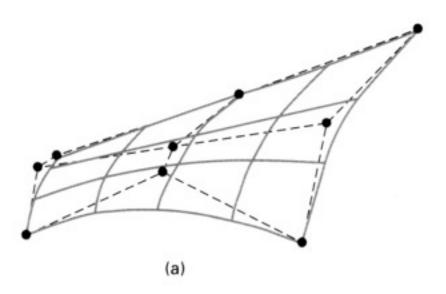
Cross product of two cubic Bézier segments



- convex hull

Biquadratic Bézier patch

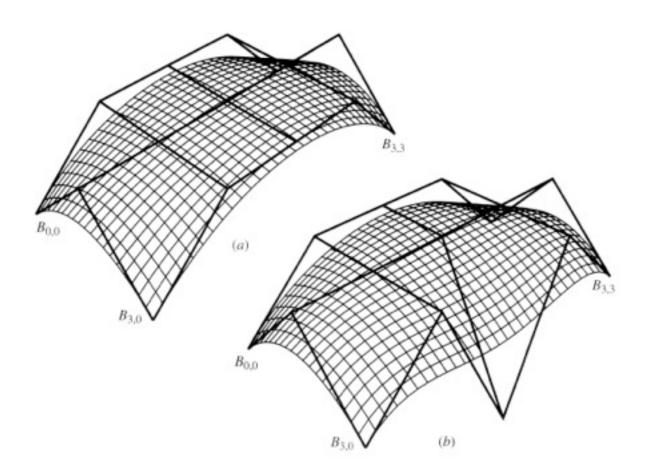
Cross product of quadratic Bézier curves



Rogers

3x5 Bézier patch

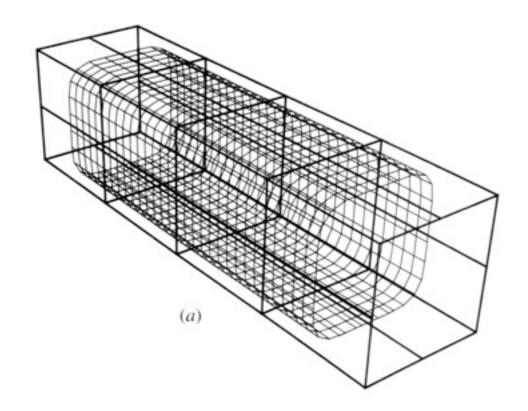
Cross product of quadratic and quartic Béziers



[Rogers]

Cylindrical B-spline surfaces

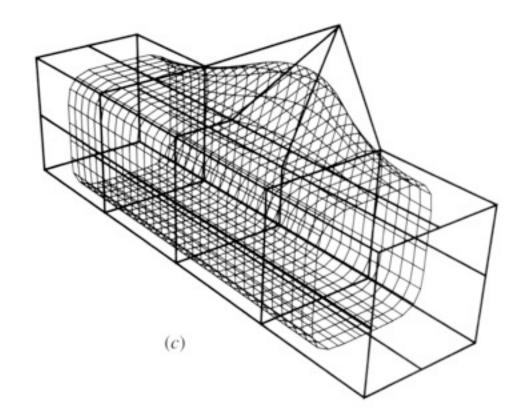
• Cross product of closed and open cubic B-splines



[Rogers]

Cylindrical B-spline surfaces

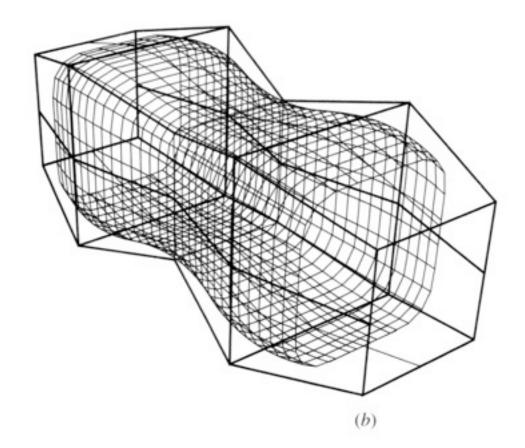
• Cross product of closed and open cubic B-splines



[Rogers]

Cylindrical B-spline surfaces

• Cross product of closed and open cubic B-splines



Topological inflexibility of splines

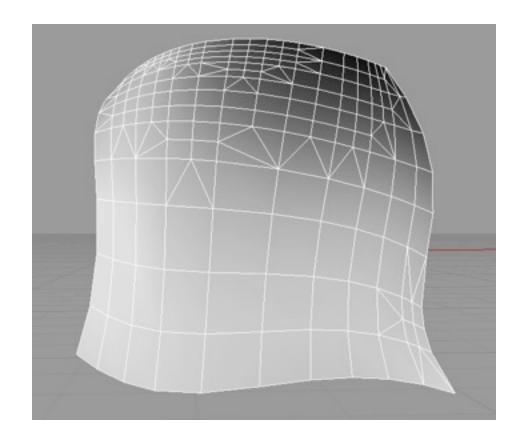
- Spline patches are generally rectangular
 - can wrap them around to make tube-like or torus-like topologies
- Continuity can be readily enforced at edges between patches and at corners where 4 patches join
 - doesn't escape from the topological limitation
- Tiling other kinds of surfaces must lead to places where the "wrong" number of patches come together
 - enforcing continuity in these cases is complicated, and is the source of many headaches

Approximating spline surfaces

- Similarly to curves, approximate with simple primitives
 - in surface case, triangles or quads
 - quads widely used because they fit in parameter space
 - generally eventually rendered as pairs of triangles
- adaptive subdivision
 - basic approach: recursively test flatness
 - if the patch is not flat enough, subdivide into four using curve subdivision twice, and recursively process each piece
 - as with curves, convex hull property is useful for termination testing (and is inherited from the curves)

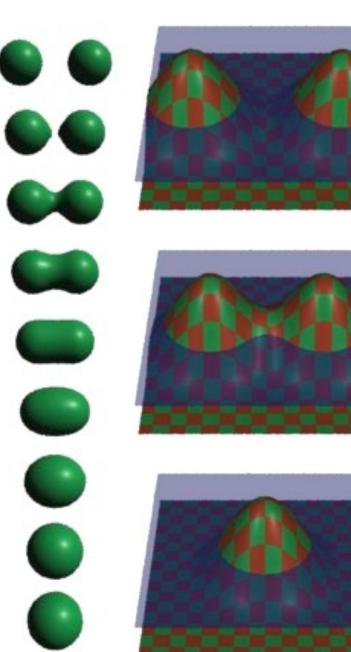
Approximating spline surfaces

- With adaptive subdivision, must take care with cracks
 - (at the boundaries between degrees of subdivision)



Specific surface reps.

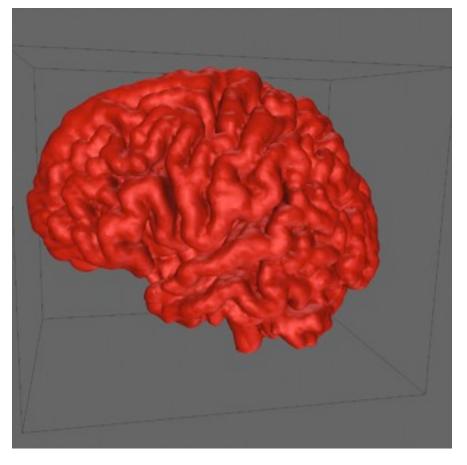
- Algebraic implicit surfaces
 - defined as zero sets of fairly arbitrary functions
 - good news: CSG is easy using min/max
 - bad news: rendering is tough
 - ray tracing: intersect arbitrary zero sets w/ray
 - pipeline: need to convert to triangles
 - e.g. "blobby" modeling



Pixar | RenderMan Artist tools]

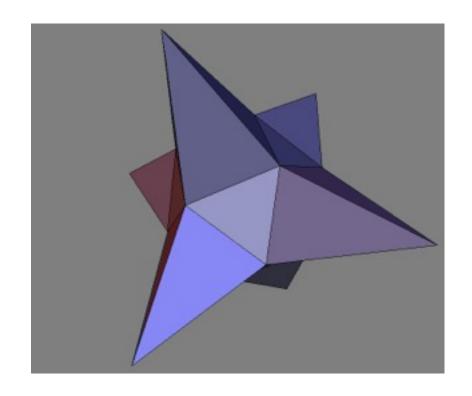
[source unknown]

- Isosurface of volume data
 - implicit representation
 - function defined by regular samples on a 3D grid
 - (like an image but in 3D)
 - example uses:
 - medical imaging
 - numerical simulation

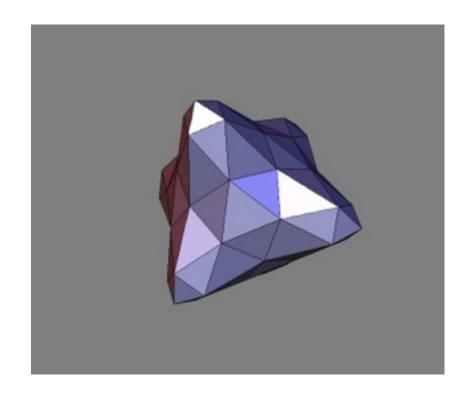


- Triangle or polygon meshes
 - parametric (per face)
 - very widely used
 - final representation for pipeline rendering
 - these days restricting to triangles is common
 - rather unstructured
 - need to be careful to enforce necessary constraints
 - to bound a volume need a watertight manifold mesh

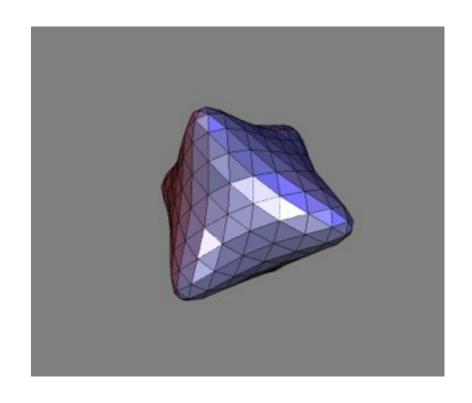
- Subdivision surfaces
 - based on polygon meshes (quads or triangles)
 - rules for subdividing surface by adding new vertices
 - converges to continuous limit surface
 - next lecture



- Subdivision surfaces
 - based on polygon meshes (quads or triangles)
 - rules for subdividing surface by adding new vertices
 - converges to continuous limit surface
 - next lecture

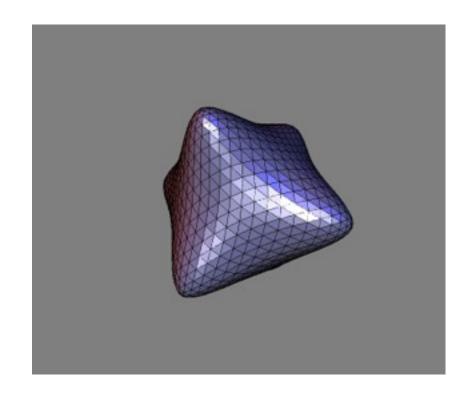


- Subdivision surfaces
 - based on polygon meshes (quads or triangles)
 - rules for subdividing surface by adding new vertices
 - converges to continuous limit surface
 - next lecture



Subdivision surfaces

- based on polygon meshes (quads or triangles)
- rules for subdividing surface by adding new vertices
- converges to continuous limit surface
- next lecture



Representing geometry

- Volumes
 - boundary representations (B-reps)
 - just represent the boundary surface
 - convenient for many applications
 - must be closed (watertight) to be meaningful
 - an important constraint to maintain in many applications

Representing geometry

- Volumes
 - CSG (Constructive Solid Geometry)
 - apply boolean operations on solids
 - simple to define
 - simple to compute in some cases
 - [e.g. ray tracing, implicit surfaces]
 - difficult to compute stably with B-reps
 - [e.g. coincident surfaces]