
11/13/2013 

1 

CS 4120 

Introduction to Compilers 

Ross Tate 

Cornell University 

Lecture 31: Control-flow analysis 

2 CS 4120 Introduction to Compilers 

Loops 
• Most execution time in most programs is spent in 

loops: 90/10 is typical 

• Most important targets of optimization: loops 

• Loop optimizations: 

• loop-invariant code motion 

• loop unrolling 

• loop peeling 

• loop-induction-variable strength reduction 

• removal of bounds checks 

• loop tiling 

• When to apply loop optimizations? 

3 CS 4120 Introduction to Compilers 

High-level optimization? 

• Loops may be hard to recognize in 

IR or quadruple form -- should we 

apply loop optimizations to source 

code or high-level IR? 

• Many kinds of loops: while, do/while, 

continue 

• loop optimizations benefit from other IR-

level optimizations and vice-versa -- want 

to be able to interleave 

• Problem: identifying loops in CFG 
4 CS 4120 Introduction to Compilers 

Definition of a loop 

• A loop is a set of nodes in the CFG 

• We will assume each loop has a unique entry 
point, called the header 

• Every node is reachable 
from header, header 
reachable from every 
node: strongly-connected 
component 

• No entering edges from 
outside except to header 

• nodes with outgoing 
edges: loop-exit nodes 

header 

loop exit 

5 CS 4120 Introduction to Compilers 

Nested loops 
• Control-flow graph may contain many loops, 

and loops may contain each other 

• Control-flow analysis: identify the loops and 

nesting structure: 

inner loop 

control 
tree 

6 CS 4120 Introduction to Compilers 

Dominators 

• CFA based on idea of dominators 

• Node A dominates node B if the only 

way to reach B from start node is 

through A 

• Edge in CFG is a 

back edge if destination 

dominates source 

• A loop contains at least one back 

edge 

1 

2 

5 4 
3 

back edge 



11/13/2013 

2 

7 CS 4120 Introduction to Compilers 

Dominator tree 
• Domination is transitive; if A dominates B and B 

dominates C, then A dominates C 

• Domination is anti-symmetric 

• Every CFG has dominator tree 

1 

2 

3 4 

5 6 

7 8 

9 10 

1 

2 

3 4 

5 6 

7 8 

9 10 

8 CS 4120 Introduction to Compilers 

Dominator dataflow analysis 

• Forward analysis; out[n] is set of nodes dominating n 

• A node B is dominated by another node A if A 

dominates all of the predecessors of B 

in[n] = ∩n’∈pred[n] out[n’] 

• Every node dominates itself 

out[n] = in[n] ∪ {n} 

• Formally 

– preorder = sets of nodes ordered by ⊇ 

• ⊥ = {all n} 

– flow functions Fn(x) = x ∪ {n}, ⊤ = {all n} 

– Standard iterative analysis gives best solution 

9 CS 4120 Introduction to Compilers 

Completing control-flow analysis 

• Dominator analysis gives all back edges 

• Each back edge n→h has an associated natural 
loop with h as its header 

• For each back edge, find natural loop: 

– all nodes reachable from h that reach n 
without going through h 

• Nest loops based on subset 

relationship between natural loops 

• Exception: natural loops may share 

same header; merge them into 

larger loop 

• Control tree built using nesting 

relationship 

1 

2 

3 4 

5 6 

7 8 

9 10 

Inserting 𝛟 Nodes 

10 


