Using scope

- Observation: temporaries, variables have bounded scope in program
- Simple idea: use information about program scope to decide which variables are live
- Problem: overestimates liveness

```
{ int b = a + 2;
    int c= b*b;
```

```
\(\longleftarrow\) \(c\) is live, \(b\) is not
\(\longleftarrow\)
what is live here?
return d; \}
```


Control-Flow Graph

- Canonical IR forms control-flow graph (CFG)
- statements are nodes; jumps/fall-throughs are edges

Problem

- Abstract assembly contains arbitrarily many registers t_{i}
- Want to replace all such nodes with register nodes for e[a-d]x, e[sd]i, (ebp)
- Local variables allocated to TEMP's too
- Only 6-7 usable registers: need to allocate multiple t_{i} to each register
- For each statement, need to know which variables are live to reuse registers

Live-variable analysis

- Goal: for each statement, identify which temporaries are live
- Analysis will be conservative (may over-estimate liveness, will never under-estimate)
- But more precise than simple scope analysis (will estimate fewer live temporaries)

Liveness

- Liveness is associated with edges of control flow graph, not nodes (statements)

- Same register can be used for different temporaries manipulated by one statement

Example		
$\begin{aligned} & \mathrm{a}=\mathrm{b}+1 \\ & \quad \square \\ & \operatorname{MOVE}(\operatorname{TEMP}(\mathrm{ta}), \operatorname{TEMP}(\mathrm{tb})+1) \end{aligned}$		
mov ta, tb add ta, 1	tb Live: tb mov ta, tb add ta, 1 Live: ta	
Register allocation: ta \Rightarrow eax, tb \Rightarrow eax mov eax, eax add eax, 1		
cs 4roo Introdution to Compless		

Liveness

- Variable v is live on edge e if there is
- a node n in the CFG that uses it and - a directed path from e to n passing through no def
- How to compute efficiently?
- How to use?

Use/Def

- Every statement uses some set of variables (reads from them) and defines some set of variables (writes to them)
- For statement s define:
- use[s] : set of variables used by s
- $\operatorname{def}[s]$: set of variables defined by s
- Example:
$-\mathrm{a}=\mathrm{b}+\mathrm{c} \quad$ use $=\mathrm{b}, \mathrm{c} \quad$ def $=\mathrm{a}$
$-\mathrm{a}=\mathrm{a}+1 \quad$ use $=\mathrm{a} \quad$ def $=\mathrm{a}$

Simple algorithm: Backtracing

- "variable v is live on edge e if there is a node n in the CFG that uses it and a directed path from e to n passing through no def"
- (Slow) algorithm: Try all paths "from" each use of a variable, tracing backward in the CFG until a def node or previously visited node is reached. Mark variable live on each edge traversed.

Dataflow Analysis

- Idea: compute liveness for all variables simultaneously
- Approach: define formulae that must be satisfied by any liveness determination
- Solve formulae by iteratively converging on solution
- Instance of general technique for computing program properties: data-flow analysis

Data-flow values

$u s e[n]$: set of variables used by n $\operatorname{def}[n]$: set of variables defined by n in $[n]$: variables live on entry to n out $[n]$: variables live on exit from n

Clearly: $i n[n] \supseteq u s e[n]$
What other constraints are there?

Data-flow constraints

- in[n] $\supseteq u s e[n]$
- A variable must be live on entry to n if it is used by the statement itself
- in $[n] \supseteq$ out $[n] \backslash \operatorname{def}[n]$
- If a variable is live on output and the statement does not define it, it must be live on input too
- out $[n] \supseteq$ in $\left[n^{\prime}\right]$ if $n^{\prime} \in \operatorname{succ}[n]$
- if live on input to n^{\prime}, must be live on output from n

Iterative data-flow analysis

- Initial assignment to in $n n]$, out $[n]$ is empty set \varnothing - will not satisfy constraints
$i n[n] \supseteq u s e[n]$
$\operatorname{in}[n] \supseteq \operatorname{out}[n] \backslash \operatorname{def}[n]$
out $[n] \supseteq$ in $\left[n^{\prime}\right]$ if $n^{\prime} \in \operatorname{succ}[n]$
- Idea: iteratively recompute in $[\mathrm{n}]$, out $[\mathrm{n}]$ when forced to by constraints. Live-variable sets will increase monotonically.
- Dataflow equations:

> in' $^{\prime}[n]=$ use $[n]$ U (out $\left.[n] \backslash \operatorname{def}[n]\right)$
> out $^{\prime}[n]=\bigcup_{n^{\prime} \in \operatorname{succ}[n]}$ in $\left[n^{\prime}\right]$

CS 4120 Introduction to Compilers

Complete algorithm

for all n, in $[n]=$ out $[n]=\varnothing$
repeat until no change
for all n
out[n] $=U_{n^{\prime} \in \operatorname{succ}[n]}$ in[n']
in[n] = use[n] U (out[n] \def[n])
end
end

- Finds fixed point of in/out equations
- Problem: does extra work recomputing in/out values when no change can happen

Faster algorithm

- Information only propagates between nodes because of this equation:

$$
\operatorname{out}[n]=\bigcup_{n^{\prime} \in \operatorname{succ}[n]} \text { in }\left[n^{\prime}\right]
$$

- Node is updated from its successors
- If successors haven't changed, no need to apply equation for node
- Should start with nodes at "end" and work backward

CS 4120 Introduction to Compilers

Worklist algorithm

- Idea: keep track of nodes that might need to be updated in worklist: FIFO queue

```
for all \(n\), in[n] = out[n] = \(\varnothing\)
\(w=\{\) set of all nodes \(\}\)
repeat until w empty
        \(\mathrm{n}=\mathrm{w} . \operatorname{pop}()\)
        out \([n]=\bigcup_{n^{\prime} \in \operatorname{succ}[n]}\) in \(\left[n^{\prime}\right]\)
        in[n] = use[n] * (out[n] \(\backslash \operatorname{def}[n])\)
        if change to in[ \(n\) ]
            for all predecessors \(m\) of \(n\), w.add( \(m\) )
            end
```

