
10/28/2013

1

CS 4120

Introduction to Compilers

Ross Tate

Cornell University

Lecture 25: Introduction to Optimization

2 CS 4120 Introduction to Compilers

Optimization

• Next topic: how to generate better code

through optimization.

• This course covers the most valuable

and straightforward optimizations –

much more to learn!

• Other sources:

• Muchnick has 10 chapters of optimization

techniques

• Cooper and Torczon also cover optimization

3 CS 4120 Introduction to Compilers

How fast can you go?

0.1

1

10

100

1000

10000

simple code generation (PA4, JIT)

register allocation
local optimization global optimization

naive assembly code

expert assembly code

bytecode interpreters (Java, Perl 5, OCaml)

call-threaded interpreters

AST interpreters (CS 3110 RCL, Perl 4)

tokenized program interpreters (BASIC, Tcl)

direct source code interpreters

pointer-threaded interpreters (FORTH)

4 CS 4120 Introduction to Compilers

Goal of optimization

• Help programmers

• clean, modular, high-level source code

• but compile to assembly-code performance

• Optimizations are code transformations

• can’t change meaning of program to behavior

not allowed by source

• Different kinds of optimization:

• space optimization: reduce memory use

• time optimization: reduce execution time

• power optimization: reduce power usage

5 CS 4120 Introduction to Compilers

Why do we need optimization?

• Programmers may write suboptimal code to

make it clearer.

• High-level language may make avoiding

redundant computation inconvenient or

impossible

– a[i][j] = a[i][j] + 1

• Exploit patterns inexpressible at source level

• Clean up mess from translation stages

• Architectural independence.

– Modern architectures make it hard to hand optimize

6 CS 4120 Introduction to Compilers

Where to optimize?

• Usual goal: improve time performance

• But: many optimizations trade off space versus time.

• E.g.: loop unrolling replaces loop body with N copies.
• Increasing code space slows program down a little,

speeds up one loop

• Frequently executed code with long loops: space/time
tradeoff is generally a win

• Infrequently executed code: optimize code space at
expense of time, saving instruction cache space

• Complex optimizations may never pay off!

• Ideal focus of optimization: program hot spots

10/28/2013

2

7 CS 4120 Introduction to Compilers

Safety

• Possible opportunity for loop-invariant code motion:

 while (b) {

 z = y/x; // x, y not assigned in loop

 …

 }

• Transformation: invariant code out of loop:

 z = y/x;

 while (b) {

 …

 }

• Three aspects of an optimization:

• the code transformation

• safety of transformation

• performance improvement

Preserves meaning?

Faster?

8 CS 4120 Introduction to Compilers

Writing fast programs in practice

1.Pick the right algorithms and data

structures: design for locality and few

operations

2.Turn on optimization and profile to figure

out program hot spots

3.Evaluate whether design works; if so…

4.Tweak source code until optimizer does

“the right thing” to machine code

• understanding optimizers helps!

9 CS 4120 Introduction to Compilers

Structure of an optimization

• Optimization is a code transformation

• Applied at some stage of compiler

– HIR, MIR, LIR

• In general requires some analysis:

• safety analysis to determine where

transformation does not change meaning

(e.g. live variable analysis)

• cost analysis to determine where it ought to

speed up code (e.g., which variable to spill)

10 CS 4120 Introduction to Compilers

When to apply optimization

AST

Canonical

IR

IR

Abstract

Assembly

Assembly

HIR

MIR

LIR

Inlining

Specialization

Constant folding

Constant propagation

Value numbering

Dead code elimination

Loop-invariant code motion

Common sub-expression elimination

Strength reduction

Constant folding & propagation

Branch prediction/optimization

Register allocation

Loop unrolling

Cache optimization

Peephole optimizations

11 CS 4120 Introduction to Compilers

Register allocation

• Goal: convert abstract assembly (infinite # of registers)

into real assembly (6 registers)

mov t1, t2

add t1, -4(rbp)

mov t3, -8(rbp)

mov t4, t3

cmp t1, t4

• Need to reuse registers aggressively (e.g., rbx)

• Coalesce registers (t3, t4) to eliminate mov’s

• May be impossible without spilling some temporaries

to stack

mov rax, rbx

add rax, -4(rbp)

mov rbx, -8(rbp)

cmp rax, rbx

12 CS 4120 Introduction to Compilers

Constant folding

• Idea: if operands are known at compile time,

evaluate at compile time when possible.

 int x = (2 + 3)*4*y; ⇒ int x = 5*4*y;

 ⇒ int x = 20*y;

• Can perform at every stage of compilation

• Constant expressions are created by translation and

by optimization

a[2] ⇒ MEM(MEM(a) + 2*4)

 ⇒ MEM(MEM(a) + 8)

10/28/2013

3

13 CS 4120 Introduction to Compilers

Constant folding conditionals

if (true) S ⇒ S

if (false) S ⇒ ;

if (true) S else S’ ⇒ S

if (false) S else S’ ⇒ S’

while (false) S ⇒ ;

while (true) ; ⇒ ; ????

if (2 > 3) S ⇒ if (false) S ⇒ ;

14 CS 4120 Introduction to Compilers

Algebraic simplification
• More general form of constant folding: take advantage of

simplification rules

a * 1 ⇒ a b | false ⇒ b

a + 0 ⇒ a b & true ⇒ b

a * 0 ⇒ 0 b & false ⇒ false

(a + 1) + 2 ⇒ a + (1 + 2) ⇒ a+3

a * 4 ⇒ a shl 2

a * 7 ⇒ (a shl 3) − a

a / 32767 ⇒ a shr 15 + a shr 30

• Must be careful with floating point and with overflow - algebraic
identities may give wrong or less precise answers

• E.g., (a+b)+c ≠ a+(b+c) in floating point if a,b small

identities

reassociation

strength reduction

zeroes

15 CS 4120 Introduction to Compilers

Unreachable-code elimination

• Basic blocks not contained by any

trace leading from starting basic

block are unreachable and can be

eliminated

• Performed at canonical-IR or

assembly-code levels

• Reductions in code size improve

cache, TLB performance.

16 CS 4120 Introduction to Compilers

 Inlining
• Replace a function call with the body of the function:

f(a: int):int = { b:int=1; n:int = 0;

 while (n<a) (b = 2*b); return b; }

g(x: int):int = { return 1+ f(x); }

⇒ g(x:int):int = { fx:int; a:int = x;

 { b:int=1; n:int = 0;

 while (n<a) (b = 2*b); fx=b; goto finish; }

 finish: return 1 + fx; }

• Best done on HIR

• Can inline methods, but more difficult – there can be only one f.

• May need to rename variables to avoid name capture—consider if

f refers to a global variable x

17 CS 4120 Introduction to Compilers

Constant propagation

• If value of variable is known to be a
constant, replace use of variable with
constant

• Value of variable must be propagated
forward from point of assignment

 int x = 5;

 int y = x*2;

 int z = a[y]; // = MEM(MEM(a) + y*4)

• Interleave with constant folding!

18 CS 4120 Introduction to Compilers

Dead-code elimination
• If side effect of a statement can never be

observed, can eliminate the statement

x = y*y; // dead!

… // x unused

x = z*z; x = z*z;

• Dead variable: if never read after definition

int i;

while (m<n) (m++; i = i+1) while (m<n) (m++)

• Other optimizations create dead

statements/variables

10/28/2013

4

19 CS 4120 Introduction to Compilers

Copy propagation
• Given assignment x = y, replace

subsequent uses of x with y

• May make x a dead variable, result in

dead code

• Need to determine where copies of y

propagate to

x = y

x = x * f(x - 1)

x = y

x = y * f(y - 1)

20 CS 4120 Introduction to Compilers

Redundancy Elimination

• Common-Subexpression Elimination

(CSE) combines redundant computations
a(i) = a(i) + 1

⇒ [[a]+i*4] = [[a]+i*4] + 1

⇒ t1 = [a] + i*4; [t1] = [t1]+1

• Need to determine that expression

always has same value in both places
b[j]=a[i]+1; c[k]=a[i] ⇏ t1=a[i]; b[j]=t1+1; c[k]=t1

21 CS 4120 Introduction to Compilers

Loops

• Program hot spots are usually loops

(exceptions: OS kernels, compilers)

• Most execution time in most programs is

spent in loops: 90/10 is typical.

• Loop optimizations are important, effective,

and numerous

22 CS 4120 Introduction to Compilers

Loop-invariant code motion

• Another form of redundancy elimination

• If result of a statement or expression does

not change during loop, and it has no

externally-visible side effect (!), can hoist its

computation before loop

• Often useful for array element addressing

computations – invariant code not visible at

source level

• Requires analysis to identify loop-invariant

expressions

Loop-invariant code motion

for (i = 0; i < a.length; i++) {

 S // a not assigned in S

}

t1 = a.length;

for (i = 0; i < t1; i++) {

 S

}

23 CS 4120 Introduction to Compilers

hoisted loop-invariant expression

24 CS 4120 Introduction to Compilers

Strength reduction
• Replace expensive operations (*,/) by cheap ones

(+,−) via dependent induction variable

for (int i = 0; i < n; i++) {

 a[i*3] = 1;

}

 int j = 0;

 for (int i = 0; i < n; i++){

 a[j] = 1; j = j+3;

 }

10/28/2013

5

25 CS 4120 Introduction to Compilers

Loop unrolling

• Branches are expensive
– unroll loop to avoid them:

for (i = 0; i<n; i++) { S }

for (i = 0; i < n−3; i+=4) {S; S; S; S;}
for (; i < n; i++) S;

• Gets rid of ¾ of conditional branches!

• Space-time tradeoff: not a good idea for
large S or small n.

26 CS 4120 Introduction to Compilers

Summary
• Many useful optimizations that can transform

code to make it faster/smaller/...

• Whole is greater than sum of parts: optimizations
should be applied together, sometimes more
than once, at different levels

• Transformation is relatively easy

• The hard problem: when are optimizations are
safe and when are they effective?

– Data-flow analysis

– Control-flow analysis

– Pointer analysis

