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Optimization 

• Next topic: how to generate better code 

through optimization. 

• This course covers the most valuable 

and straightforward optimizations – 

much more to learn! 

• Other sources: 

• Muchnick has 10 chapters of optimization 

techniques 

• Cooper and Torczon also cover optimization 
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How fast can you go? 
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simple code generation (PA4, JIT) 

register allocation 
local optimization global optimization 

naive assembly code 

expert assembly code 

bytecode interpreters (Java, Perl 5, OCaml) 

call-threaded interpreters 

AST interpreters (CS 3110 RCL, Perl 4) 

tokenized program interpreters (BASIC, Tcl) 

direct source code interpreters 

pointer-threaded interpreters (FORTH) 

4 CS 4120 Introduction to Compilers 

Goal of optimization 

• Help programmers 

• clean, modular, high-level source code 

• but compile to assembly-code performance 

• Optimizations are code transformations 

• can’t change meaning of program to behavior 

not allowed by source 

• Different kinds of optimization: 

• space optimization: reduce memory use 

• time optimization: reduce execution time 

• power optimization: reduce power usage 

5 CS 4120 Introduction to Compilers 

Why do we need optimization? 

• Programmers may write suboptimal code to 

make it clearer. 

• High-level language may make avoiding 

redundant computation inconvenient or 

impossible 

– a[i][j] = a[i][j] + 1 

• Exploit patterns inexpressible at source level 

• Clean up mess from translation stages 

• Architectural independence. 

– Modern architectures make it hard to hand optimize 
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Where to optimize? 

• Usual goal: improve time performance 

• But: many optimizations trade off space versus time. 

• E.g.: loop unrolling replaces loop body with N copies. 
• Increasing code space slows program down a little, 

speeds up one loop 

• Frequently executed code with long loops: space/time 
tradeoff is generally a win 

• Infrequently executed code: optimize code space at 
expense of time, saving instruction cache space 

• Complex optimizations may never pay off! 

• Ideal focus of optimization: program hot spots 
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Safety 

• Possible opportunity for loop-invariant code motion: 

 while (b) { 

  z = y/x; // x, y not assigned in loop 

  … 

 } 

• Transformation: invariant code out of loop: 

 z = y/x; 

 while (b) { 

  … 

 } 

• Three aspects of an optimization: 

• the code transformation 

• safety of transformation 

• performance improvement 

Preserves meaning? 

Faster? 
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Writing fast programs in practice 

1.Pick the right algorithms and data 

structures: design for locality and few 

operations 

2.Turn on optimization and profile to figure 

out program hot spots 

3.Evaluate whether design works; if so… 

4.Tweak source code until optimizer does 

“the right thing” to machine code 

• understanding optimizers helps! 
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Structure of an optimization 

• Optimization is a code transformation 

• Applied at some stage of compiler 

– HIR, MIR, LIR 

• In general requires some analysis: 

• safety analysis to determine where 

transformation does not change meaning 

(e.g. live variable analysis) 

• cost analysis to determine where it ought to 

speed up code (e.g., which variable to spill) 
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When to apply optimization 

AST 

Canonical 

IR 

IR 

Abstract 

Assembly 

Assembly 

HIR 

MIR 

LIR 

Inlining 

Specialization 

Constant folding 

Constant propagation 

Value numbering 

Dead code elimination 

Loop-invariant code motion 

Common sub-expression elimination 

Strength reduction 

Constant folding & propagation 

Branch prediction/optimization 

Register allocation 

Loop unrolling 

Cache optimization 

Peephole optimizations 
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Register allocation 

• Goal: convert abstract assembly (infinite # of registers) 

into real assembly (6 registers) 

mov t1, t2 

add t1, -4(rbp) 

mov t3, -8(rbp) 

mov t4, t3 

cmp t1, t4 

 
• Need to reuse registers aggressively (e.g., rbx) 

• Coalesce registers (t3, t4) to eliminate mov’s 

• May be impossible without spilling some temporaries 

to stack 

mov rax, rbx 

add rax, -4(rbp) 

mov rbx, -8(rbp) 

 

cmp rax, rbx 
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Constant folding 

• Idea: if operands are known at compile time, 

evaluate at compile time when possible. 

 int x = (2 + 3)*4*y;  ⇒  int x = 5*4*y; 

    ⇒  int x = 20*y; 

• Can perform at every stage of compilation 

• Constant expressions are created by translation and 

by optimization 

a[2] ⇒ MEM(MEM(a) + 2*4) 

       ⇒ MEM(MEM(a) + 8) 
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Constant folding conditionals 

if (true) S ⇒ S 

if (false) S ⇒ ; 

if (true) S else S’ ⇒ S 

if (false) S else S’ ⇒ S’ 

while (false) S ⇒ ; 

while (true) ; ⇒ ; ???? 

if (2 > 3) S ⇒ if (false) S ⇒ ; 
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Algebraic simplification 
• More general form of constant folding: take advantage of 

simplification rules 

a * 1 ⇒ a  b | false ⇒ b 

a + 0 ⇒ a  b & true ⇒ b 

a * 0 ⇒ 0  b & false ⇒ false 

(a + 1) + 2 ⇒ a + (1 + 2) ⇒ a+3 

a * 4 ⇒ a shl 2 

a * 7 ⇒ (a shl 3) − a 

a / 32767 ⇒ a shr 15 + a shr 30 

 

• Must be careful with floating point and with overflow - algebraic 
identities may give wrong or less precise answers 

• E.g., (a+b)+c ≠ a+(b+c) in floating point if a,b small 

identities 

reassociation 

strength reduction 

zeroes 
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Unreachable-code elimination 

• Basic blocks not contained by any 

trace leading from starting basic 

block are unreachable and can be 

eliminated 

• Performed at canonical-IR or 

assembly-code levels 

• Reductions in code size improve 

cache, TLB performance. 
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 Inlining 
• Replace a function call with the body of the function: 

f(a: int):int = { b:int=1; n:int = 0; 

     while (n<a) (b = 2*b); return b; } 

g(x: int):int  = { return 1+ f(x); } 

⇒ g(x:int):int = { fx:int; a:int = x; 

   { b:int=1; n:int = 0; 

        while (n<a) ( b = 2*b); fx=b; goto finish; } 

    finish: return 1 + fx; } 

• Best done on HIR 

• Can inline methods, but more difficult – there can be only one f. 

• May need to rename variables to avoid name capture—consider if 

f refers to a global variable x 
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Constant propagation 

• If value of variable is known to be a 
constant, replace use of variable with 
constant 

• Value of variable must be propagated 
forward from point of assignment 

 int x = 5; 

 int y = x*2; 

 int z = a[y]; // = MEM(MEM(a) + y*4) 

• Interleave with constant folding! 
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Dead-code elimination 
• If side effect of a statement can never be 

observed, can eliminate the statement 

x = y*y;  // dead!    

…     // x unused 

x = z*z;     x = z*z; 

• Dead variable: if never read after definition 

int i; 

while (m<n) ( m++; i = i+1) while (m<n) (m++) 

• Other optimizations create dead 

statements/variables 
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Copy propagation 
• Given assignment x = y, replace 

subsequent uses of x with y 

• May make x a dead variable, result in 

dead code 

• Need to determine where copies of y 

propagate to 

x = y 

x = x * f(x - 1) 

x = y 

x = y * f(y - 1) 
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Redundancy Elimination 

• Common-Subexpression Elimination 

(CSE) combines redundant computations 
a(i) = a(i) + 1 

⇒ [[a]+i*4] = [[a]+i*4] + 1 

⇒ t1 = [a] + i*4; [t1] = [t1]+1 

• Need to determine that expression 

always has same value in both places 
b[j]=a[i]+1; c[k]=a[i] ⇏ t1=a[i]; b[j]=t1+1; c[k]=t1 
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Loops 

• Program hot spots are usually loops 

(exceptions: OS kernels, compilers) 

• Most execution time in most programs is 

spent in loops: 90/10 is typical. 

• Loop optimizations are important, effective, 

and numerous 
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Loop-invariant code motion 

• Another form of redundancy elimination 

• If result of a statement or expression does 

not change during loop, and it has no 

externally-visible side effect (!), can hoist its 

computation before loop 

• Often useful for array element addressing 

computations – invariant code not visible at 

source level 

• Requires analysis to identify loop-invariant 

expressions 

Loop-invariant code motion 

for (i = 0; i < a.length; i++) { 

 S // a not assigned in S 

} 

 

t1 = a.length; 

for (i = 0; i < t1; i++) { 

 S 

} 
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hoisted loop-invariant expression 
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Strength reduction 
• Replace expensive operations (*,/) by cheap ones 

(+,−) via dependent induction variable 

 

for (int i = 0; i < n; i++) { 

 a[i*3] = 1; 

} 

    int j = 0; 

    for (int i = 0; i < n; i++){ 

     a[ j ] = 1; j = j+3; 

    } 
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Loop unrolling 

• Branches are expensive 
– unroll loop to avoid them: 

for (i = 0; i<n; i++) { S } 

 
for (i = 0; i < n−3; i+=4) {S; S; S; S;} 
for (      ; i < n; i++) S; 

 

• Gets rid of ¾ of conditional branches! 

• Space-time tradeoff: not a good idea for 
large S or small n. 
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Summary 
• Many useful optimizations that can transform 

code to make it faster/smaller/... 

• Whole is greater than sum of parts: optimizations 
should be applied together, sometimes more 
than once, at different levels 

• Transformation is relatively easy 

• The hard problem: when are optimizations are 
safe and when are they effective? 

– Data-flow analysis 

– Control-flow analysis 

– Pointer analysis 


