10/28/2013

CS 4120
Introduction to Compilers

Ross Tate
Cornell University

Lecture 25: Introduction to Optimization

Optimization

* Next topic: how to generate better code
through optimization.

» This course covers the most valuable
and straightforward optimizations —
much more to learn!

» Other sources:

» Muchnick has 10 chapters of optimization
techniques

+ Cooper and Torczon also cover optimization

CS 4120 Introduction to Compilers 2

How fast can you go?

10000 - direct source code interpreters
1000 — tokenized program interpreters (BASIC, Tcl)
AST interpreters (CS 3110 RCL, Perl 4)

100 +—
bytecode interpreters (Java, Perl 5, OCaml)

call-threaded jnterpreters
10 — pointer-threaded interpreters (FORTH)

simple code generation (PA4, JIT)

1 — register allocation paive assembly code

le%(C[?elr?pats]gnelnzﬁ?)tl?rc]o JeSlobal optimization

0.1 +

CS 4120 Introduction to Compilers 3

Goal of optimization

* Help programmers
« clean, modular, high-level source code
* but compile to assembly-code performance
» Optimizations are code transformations
+ can’t change meaning of program to behavior
not allowed by source
« Different kinds of optimization:
* space optimization: reduce memory use
« time optimization: reduce execution time
* power optimization: reduce power usage

CS 4120 Introduction to Compilers 4

Why do we need optimization?
Programmers may write suboptimal code to
make it clearer.

High-level language may make avoiding
redundant computation inconvenient or
impossible

— a[il[j] = afi][i] + 1

Exploit patterns inexpressible at source level
Clean up mess from translation stages
Architectural independence.

— Modern architectures make it hard to hand optimize

CS 4120 Introduction to Compilers 5

Where to optimize?

» Usual goal: improve time performance
» But: many optimizations trade off space versus time.
« E.g.: loop unrolling replaces loop body with N copies.

Increasing code space slows program down a little,
speeds up one loop
+ Frequently executed code with long loops: space/time
tradeoff is generally a win
* Infrequently executed code: optimize code space at
expense of time, saving instruction cache space
+ Complex optimizations may never pay off!

« ldeal focus of optimization: program hot spots

CS 4120 Introduction to Compilers 6

10/28/2013

Safety

» Possible opportunity for loop-invariant code motion:
while (b) {
z=ylx; Il x, y not assigned in loop
}
« Transformation: invariant code out of loop:

z=ylx;
while (b) { Preserves meaning?
} Faster?

» Three aspects of an optimization:
- the code transformation
- safety of transformation
« performance improvement

CS 4120 Introduction to Compilers 7

Writing fast programs in practice

1.Pick the right algorithms and data
structures: design for locality and few
operations

2.Turn on optimization and profile to figure
out program hot spots

3.Evaluate whether design works; if so...

4.Tweak source code until optimizer does
“the right thing” to machine code
 understanding optimizers helps!

CS 4120 Introduction to Compilers 8

Structure of an optimization

Optimization is a code transformation
Applied at some stage of compiler

— HIR, MIR, LIR

In general requires some analysis:

« safety analysis to determine where
transformation does not change meaning
(e.g. live variable analysis)

« cost analysis to determine where it ought to
speed up code (e.g., which variable to spill)

CS 4120 Introduction to Compilers 9

When to apply optimization

AST Inlining
Specialization
IR Constant folding
Constant propagation
Value numbering
Canonical Dead code elimination
IR Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Abstract Constant folding & propagation
Assembly Branch prediction/optimization
Register allocation
Loop unrolling
Assembly Cache optimization
Peephole optimizations

€S 4120 Introduction to Compilers 10

Register allocation

» Goal: convert abstract assembly (infinite # of registers)
into real assembly (6 registers)

mov tl, t2 mov rax, rbx

add tl1, -4 (rbp) add rax, -4(rbp)

mov t3, -8 (rbp) q mov rbx, -8(rbp)

mov t4, t3

cmp tl, t4 cmp rax, rbx

» Need to reuse registers aggressively (e.g., rbx)
» Coalesce registers (3, t4) to eliminate mov’s

» May be impossible without spilling some temporaries
to stack

CS 4120 Introduction to Compilers 1

Constant folding

* ldea: if operands are known at compile time,
evaluate at compile time when possible.
intx = (2 + 3)*4*y,; = int x = 5*4*y;
= int x = 20*y;
» Can perform at every stage of compilation
+ Constant expressions are created by translation and
by optimization
a[2] = MEM(MEM(a) + 2*4)
= MEM(MEM(a) + 8)

CS 4120 Introduction to Compilers 12

10/28/2013

Constant folding conditionals

if (true)S=S

if (false) S = ;

if (frue) SelseS’= S

if (false) S else S’ = §’
while (false) S = ;

while (true) ; = ; ?2?2?7?
if(2>3)S=if (false) S = ;

CS 4120 Introduction to Compilers 13

Algebraic simplification

+ More general form of constant folding: take advantage of
simplification rules
a*l=a b |false = b

at+t0=a b &true =b identities
a*0=0 b & false = false zeroes
@+1)+2=a+(1+2)=a+3 reassociation
a*4=ashl2 .
a*7=(ashl3)-a strength reduction

a /32767 = a shr 15 + a shr 30

+ Must be careful with floating point and with overflow - algebraic
identities may give wrong or less precise answers
« E.g., (atb)+c # a+(b+c) in floating point if a,b small

CS 4120 Introduction to Compilers 14

Unreachable-code elimination

* Basic blocks not contained by any
trace leading from starting basic
block are unreachable and can be
eliminated

» Performed at canonical-IR or
assembly-code levels

* Reductions in code size improve
cache, TLB performance.

CS 4120 Introduction to Compilers 15

Inlining

» Replace a function call with the body of the function:
f(a: int):int = { b:int=1; n:int = 0;
while (n<a) (b = 2*b); return b; }
g(x: int):int ={return 1+ f(x); }
= g(x:int):int = { fx:int; azint = x;
{ b:int=1; n:int = 0;
while (n<a) (b = 2*b); fx=b; goto finish; }
finish: return 1 +fx; }
* Bestdone on HIR
« Can inline methods, but more difficult — there can be only one f.
+ May need to rename variables to avoid name capture—consider if
f refers to a global variable x

€S 4120 Introduction to Compilers 16

Constant propagation

« If value of variable is known to be a
constant, replace use of variable with
constant

* Value of variable must be propagated
forward from point of assignment

intx=5;

inty = x*2;

int z = aly]; // = MEM(MEM(a) + y*4)
* Interleave with constant folding!

CS 4120 Introduction to Compilers 17

Dead-code elimination

« If side effect of a statement can never be
observed, can eliminate the statement

X = y*ry; /l dead!
/I x unused ‘
X = z*z; X = z*z;

« Dead variable: if never read after definition

inti;

while (m<n) (m++; i =i+1) q while (m<n) (m++)

= Other optimizations create dead
statements/variables

CS 4120 Introduction to Compilers 18

10/28/2013

Copy propagation
» Given assignment x =y, replace
subsequent uses of x with y
* May make x a dead variable, result in
dead code
* Need to determine where copies of y
propagate to

Redundancy Elimination

» Common-Subexpression Elimination
(CSE) combines redundant computations

a(i) = a(i) + 1

= [[a]+i*4] = [[a]+i*4] + 1

= t1 =[a] +i*4; [t1] = [t1]+1

* Need to determine that expression
always has same value in both places

X=y X=y ealiled: clkleali —alils Blil=t1+1: clk]=
X :X*f(X) 1) q X :y*f(y- 1) b[jl=a[i]+1; c[k]=a[i] # t1=a[i]; b[j]=t1+1; c[k]=t1
Loops Loop-invariant code motion

» Program hot spots are usually loops
(exceptions: OS kernels, compilers)

» Most execution time in most programs is
spent in loops: 90/10 is typical.

» Loop optimizations are important, effective,
and numerous

CS 4120 Introduction to Compilers 21

» Another form of redundancy elimination

« If result of a statement or expression does
not change during loop, and it has no
externally-visible side effect (!), can hoist its
computation before loop

» Often useful for array element addressing
computations — invariant code not visible at
source level

» Requires analysis to identify loop-invariant
expressions

€S 4120 Introduction to Compilers 2

Loop-invariant code motion

for (i = 0; i < a.length; i++) {
S //anotassignedin S

} l hoisted loop-invariant expression

for (i = 0; i < t1; i++) {
S
}

CS 4120 Introduction to Compilers 2

Strength reduction

* Replace expensive operations (*,/) by cheap ones
(+,-) via dependent induction variable

for (inti=0;1i<n;i++){
ali*3] = 1;

}
intj =0;
for (inti=0;i<n;i++){

al[jl=13=j+3;
3

CS 4120 Introduction to Compilers 24

10/28/2013

Loop unrolling

* Branches are expensive
—unroll loop to avoid them:

for (i=0; i<n; i++) { S}

for i=0;i<n-3;i+=4) {S; S; S; S;}
for (;1< i++) S;

» Gets rid of 34 of conditional branches!

» Space-time tradeoff: not a good idea for
large S or small n.

CS 4120 Introduction to Compilers 25

Summary

Many useful optimizations that can transform
code to make it faster/smaller/...

Whole is greater than sum of parts: optimizations
should be applied together, sometimes more
than once, at different levels

Transformation is relatively easy

The hard problem: when are optimizations are
safe and when are they effective?

— Data-flow analysis

— Control-flow analysis

— Pointer analysis

CS 4120 Introduction to Compilers 26

