
10/20/2013

1

CS 4120

Introduction to Compilers

Ross Tate

Cornell University

Lecture 21: Multiple Inheritance

2CS 4120 Introduction to Compilers

Field Offsets
class Shape {
Point LL /* 4 */ , UR; /* 8 */
void setCorner(int which, Point p);

}
class ColoredRect extends Shape {
Color c; /* 12 */
void setColor(Color c_);

}

• Offsets of fields from beginning are same for all subclasses

• Accesses to fields are indexed loads

o : ColoredRect

E[[o.c]] = MEM(E[[o]] + 12)

E[[o.UR]] = MEM(E[[o]] + 8)

• Need to know size of superclasses – can be a problem

• e.g., Java – field offsets resolved at dynamic link/load time

3CS 4120 Introduction to Compilers

Field Alignment
• In many processors, a 32-bit load must be to an

address divisible by 4, and an address of a 64-

bit load must be divisible by 8

• In rest (e.g. Pentium), loads are 10× faster if

aligned -- avoids extra load

⇒ Fields should be aligned

struct {

int x; char c; int y; char d;

int z; double e;

}

x
c

y
d

z

e

4CS 4120 Introduction to Compilers

Multiple Inheritance

• Mechanism: a class may declare

multiple superclasses (C++)

• Java: may implement multiple

interfaces, may inherit code from only

one superclass

• Two problems: multiple supertypes,

multiple superclasses

• What are implications of multiple

supertypes in compiler?

5CS 4120 Introduction to Compilers

Semantic problems

• Problem 1: ambiguity

class A { int m(); }

class B { int m(); }

class C extends A, B {} // which m?

• All methods/fields must be uniquely defined

• Problem 2: field replication
class A { int x; }

class B1 extends A { … }

class B2 extends A { … }

class C extends B1, B2 { … }

A

B1 B2

C

6CS 4120 Introduction to Compilers

Dispatch tables break

interface Shape {

void setCorner(int w, Point p); 0

}

interface Color {

float get(int rgb); 0

void set(int rgb, float value); 1

}

class Blob implements Shape, Color {

...

}

10/20/2013

2

7CS 4120 Introduction to Compilers

DV alternatives

• Option 1: search with inline cache

(Smalltalk, Java)

• For each class/interface, have table

mapping method names to method

code. Recursively walk upward in

hierarchy looking for method name

• Optimization: at call site, store class

and code pointer in call site code

(inline caching). On call, check

whether class matches cache.

8CS 4120 Introduction to Compilers

Inline-cache code

• Let to be the receiver object:

mov t1, [to]

cmp t1, [cacheClass434]

jnz miss

call [cacheCode434]

miss: do slowDispatch

90% of calls from a site go to
same code as last call from

same site

9CS 4120 Introduction to Compilers

Option 2: Sparse dispatch vectors

• Make sure that two methods never allocated at same

offset: give Shape offset 0, Color offsets 1 and 2.

Allow holes in DV!

• Some methods can be given same offset since they

never occur in the same DV

• Graph coloring techniques can be used to compute

method indices in reasonably optimal way (finding

optimum is NP-complete!)

10CS 4120 Introduction to Compilers

Sparse Dispatch Vectors

• Advantage: same fast dispatch code as SI case

• Disadvantage: requires knowledge of entire
type hierarchy (makes separate compilation,
dynamic loading difficult)

interface Shape {

void setCorner(int w, Point p); 0

}

interface Mass {

void setWeight(int kg); 1

}

interface Color {

float get(int rgb); 2

void set(int rgb, float value); 3

}

class Blob implements Shape, Color { … }

setCorner

get

set

setWeight

11CS 4120 Introduction to Compilers

Option 3: Hash Tables
• Idea: don’t try to give all method unique

indices; resolve conflicts by checking that entry
is correct at dispatch

• Use hashing to generate method indices

• Precompute hash values!

• Some Java implementations

interface Shape {

void setCorner(int w, Point p); 11

}

interface Color {

float get(int rgb); 4

void set(int rgb, float value); 7

}

class Blob implements Shape, Color { … }

12CS 4120 Introduction to Compilers

Dispatch with Hash Tables

• What if there’s a conflict?

– Entries containing several methods point to resolution code

• Basic dispatch code is (almost) identical!

• Advantage: simple, reasonably fast

• Disadvantage: some wasted space in DV, extra
argument for resolution, slower dispatch if conflict

Fixed #

entriesset

setCorner

get

10/20/2013

3

13CS 4120 Introduction to Compilers

Option 5: Binary decision trees
• Idea: use conditional branches, not indirect jumps

• Unique class index stored in first object word

• Range tests used to select among n possible classes at call
site in lg n time – direct branches to code

Shape x;
x.SetCorner(…)

mov ebx, [eax]
cmp ebx, 1
jle L1
cmp ebx, 2
je Circle$setCorner
jmp Egg$setCorner
L1: cmp ebx, 0
je Blob$setCorner
jmp Rect$setCorner

Shape

Blob Rectangle Circle

Color

0 1 2
RGBColor Egg

43

Decision tree

0 1 2 4

2

Circle

14CS 4120 Introduction to Compilers

Binary decision tree
• Works well if distribution of classes is highly

skewed: branch prediction hardware eliminates
branch stall of ~10 cycles
• Can use profiling to identify common paths for each

call site individually

• 90%/10% : usually a common path
to put at top of decision tree

• Like sparse DVs: need whole-program analysis

• Indirect jump can have better expected
execution time for >2 classes: at most one
mispredict

34
… …

Option 6: Interface Table
V-Table links to array of interfaces

– scan through array for target interface

– retrieve offset and add to v-table address

Embed interface method tables inside v-table

– all methods occur in v-table anyways

– may force method to occur twice in v-table

15

V-Table

(Blob

fields)

I-Table

get

set

setCorner

(Blob

methods)

Shape

3

Color

1

Interface Table

• Disadvantages

– Linear-time lookup

• Advantages

– Linear in # of interfaces implemented by an

object (usually very small)

– Good cache behavior

– Only needs to be done once per interface

• then constant per method!

– Interface table can be updated dynamically
16

