
9/5/2013

1

CS 412

Introduction to Compilers

Ross Tate

Cornell University

Lecture 4: Syntactic Analysis

2

Where we are

Source code

(character stream)

Lexical analysis

Syntactic Analysis

(specification)

Token stream

Abstract syntax tree

(AST)

Semantic Analysis

if (b == 0) a = b;

if (b) a = b ; 0 ==

if
==

b 0

=

a b

;

3

What is Syntactic Analysis?

Source code

(token stream)

{
 if (b == (0)) a = b;
 while (a != 1) {
 stdio.print(a);
 a = a - 1;
 }
}

if_stmt
bin_op

variable

b

constant

0

block

while_stmt
bin_op

== != variable constant

block

expr_stmt

Abstract Syntax

Tree

1 a call
.

stdio print variable

a

=

...

...

...

...

4

Parsing

• Parsing: recognizing whether a program
(or sentence) is grammatically well-
formed & identifying the function of each
component.

“I gave him the book”
sentence

subject: I verb:gave indirect object:

 him

object

noun phrase

article: the noun: book

5

Overview of Syntactic Analysis

• Input: stream of tokens

• Output: abstract syntax tree

– Abstract syntax tree removes extra syntax
a + b ≈ (a) + (b) ≈ ((a)+((b)))

bin_op

a + b

6

What Parsing doesn’t do
• Doesn’t check many things: type

agreement, variables declared, variables
initialized, etc.

– int x = true;

– int y; z = f(y);

• Deferred until semantic analysis

9/5/2013

2

7

Specifying Language Syntax

• First problem: how to describe language
syntax precisely and conveniently

• Last time: can describe tokens using
regular expressions

• Regular expressions easy to implement,
efficient (by converting to DFA)

• Why not use regular expressions (on
tokens) to specify programming language
syntax?

8

Limits of REs
• Programming languages are not regular --

cannot be described by regular expressions

• Consider: language of all strings that contain
balanced parentheses (easier than PLs)

–() (()) ()()() (())()((()()))

–(()(()) (()()

• Problem: need to keep track of number of
parentheses seen so far: unbounded counting

9

Limits of REs
• RE = DFA

• DFA has only finite number of states;
cannot perform unbounded counting

(((((

)))))

maximum depth: 5 parens

Compiler

Writer

Regexes

11

Context-Free Grammars
• A specification of the balanced-parenthesis

language:
S → (S) S

S → ε

• The definition is recursive

• A context-free grammar
– More expressive than regular expressions

– S = (S) ε = ((S) S) ε = ((ε) ε) ε = (())

• If a grammar accepts a string, there is a
derivation of that string using the
productions of the grammar

12

• Terminals
– Token or ε

• Non-terminals
– Syntactic variables

• Start symbol
– A special nonterminal is designated: S

• Productions
– Specify how non-terminals may be expanded to

form strings
– LHS: single non-terminal, RHS: string of

terminals or non-terminals

• Vertical bar is shorthand for multiple prod’ns

S → (S) S

S → ε

Definition of CFG

9/5/2013

3

13 CS 412/413 Introduction to Compilers Spring '01 -- Andrew Myers

RE is subset of CFG

• Regular Expression for real numbers:
 digit → [0-9]

posint → digit+
int → -? posint
real → int . (ε | posint)

• RE symbolic names are only shorthand:
no recursion, so all symbols can be fully
expanded:
real → -? [0-9]+ . (ε | ([0-9]+))

14

Sum grammar

S → E + S | E

E → number | (S)

 e.g. (1 + 2 + (3+4))+5

S → E + S
S → E
E → number
E → (S)

4 productions

2 non-terminals: S, E

4 terminals: (,), +, number

start symbol S

15

Derivation Example

S → E + S | E

E → number | (S)

Derive (1+2+ (3+4))+5:

S → E + S → (S) + S → (E + S)+ S
 → (1 + S)+S → (1 + E + S)+S
 → (1 + 2 + S)+S → (1 + 2 + E)+S
 → (1 + 2 + (S))+S → (1 + 2 + (E + S))+S
 → (1 + 2 + (3 + S))+S
 → (1 + 2 + (3 + E))+S
 → (1 + 2+ (3+4))+S
 → (1 + 2+ (3+4))+E
 → (1 + 2+ (3+4))+5

replacement string

non-terminal being expanded
16

Constructing a derivation
• Start from start symbol: S

• Productions are used to derive a sequence
of tokens from the start symbol

• For arbitrary strings α, β and γ

and a production A → β

A single step of derivation is

 αAγ ⟹ αβγ
– i.e., substitute β for an occurrence of A

– (S + E) + E → (E + S + E)+E

(A = S, β = E + S)

17

Derivation Example

S → E + S | E

E → number | (S)

Derive (1+2+ (3+4))+5:

S → E + S → (S) + S → (E + S)+ S
 → (1 + S)+S → (1 + E + S)+S
 → (1 + 2 + S)+S → (1 + 2 + E)+S
 → (1 + 2 + (S))+S → (1 + 2 + (E + S))+S
 → (1 + 2 + (3 + S))+S
 → (1 + 2 + (3 + E))+S
 → (1 + 2+ (3+4))+S
 → (1 + 2+ (3+4))+E
 → (1 + 2+ (3+4))+5

replacement string

non-terminal being expanded
18

• Tree representation of the
derivation

• Leaves of tree are terminals;
in-order traversal yields string

• Internal nodes: non-terminals
• No information about order of

derivation steps

Derivation ⟹ Parse Tree

S → E + S → (S) + S → (E + S)+ S → (1 + S)+S → (1 + E + S)+S

 → (1 + 2 + S)+S → … → (1 + 2 + (S))+S → (1 + 2 + (E + S))+S

 → … → (1 + 2 + (3 + E))+S → … → (1 + 2+ (3+4))+5

Parse

Tree

Derivation

S → E + S | E

E → number | (S)
(1+2+ (3+4))+5

(S) E

S

E + S

E + S

E + S

(S)

1

2

3

E

E + S
E
4

5

9/5/2013

4

19

Parse Tree

• Also called “concrete syntax”

parse tree/
concrete syntax abstract

syntax tree

(Discards/abstracts
unneeded information)

(S) E

S

E + S

E + S

E + S

(S)

1

2

3

E

E + S
E
4

5
+

5 +

+

3 4

1

2 +

20

Derivation order
• Can choose to apply productions in any order;

select any non-terminal

E + S → 1 + S or E + E + S

• Two standard orders: left- and right-most --

useful for different kinds of automatic parsing

• Leftmost derivation: In the string, find the
left-most non-terminal and apply a production
to it. E + S → 1 + S

• Rightmost derivation: find right-most non-

terminal…etc. E + S → E + E + S

21

Example

• Left-most derivation

S →E+S →(S) + S → (E + S)+ S → (1 + S)+S →
(1+E+S)+S → (1+2+S)+S → (1+2+E)+S → (1+2+(S))+S
→ (1+2+(E+S))+S → (1+2+(3+S))+S → (1+2+(3+E))+S
→ (1+2+(3+4))+S → (1+2+(3+4))+E → (1+2+(3+4))+5

• Right-most derivation

S → E+S → E+E → E+5 → (S)+5 → (E+S)+5 →
(E+E+S)+5 → (E+E+E)+5 → (E+E+(S))+5 →
(E+E+(E+S))+5 → (E+E+(E+E))+5 → (E+E+(E+4))+5
→ (E+E+(3+4))+5 → (E+2+(3+4))+5 → (1+2+(3+4))+5

• Same parse tree: same productions chosen, diff. order

S → E + S | E

E → number | (S)

22

Associativity
• + operator associates to right in parse tree

regardless of derivation order

• + associates to right because of right-
recursive production S → E + S

• In the example grammar, leftmost and
rightmost derivations produce identical
parse trees

(1+2+(3+4))+5

+

5 +

+ 1

+ 2

4 3

23

An Ambiguous Grammar

• Consider another grammar:

S → S + S | S * S | number

• Different derivations produce different
parse trees: ambiguous grammar

24

Differing Parse Trees

• Consider expression 1 + 2 * 3

• Derivation 1: S → S + S → 1 + S → 1 + S * S

 → 1 + 2 * S → 1 + 2 * 3

• Derivation 2: S → S * S → S * 3 → S + S * 3

 → S + 2 * 3 → 1 + 2 * 3

S → S + S | S * S | number

1 2 3
*

+

1 2 3

* 1 2 + ≠

9/5/2013

5

25

Impact of Ambiguity

1 2 3
*

+

1 2 3

= 7 = 9 +

• Different parse trees correspond to
different evaluations!

• Meaning of program not well defined

*

26

Eliminating Ambiguity
• Often can eliminate ambiguity by adding

non-terminals & allowing recursion only
on right or left

 S → S + T | T

 T → T * num | num

• S/T separation enforces precedence

• Left-recursion : left-associativity

S

S + T

T * 3 T

1 2

27

if-then-else

• How to write a grammar for if stmts?

 S → if (E) S else S

 S → if (E) S

 S → X = E | …

• Is this grammar ok?

28

No—Ambiguous!
• How to parse?

if (E1) if (E2) S1 else S2

• Which “if” is the “else” attached to?

S → if (E) S
 → if (E) if (E) S else S

S → if (E) S else S
 → if (E) if (E) S else S

S → if (E) S
S → if (E) S else S
S → other

if

E1 if

E2 S1 S2

if

E1 if S2

E2 S1

29

Grammar for Closest-if Rule

• Want to rule out if (E) if (E) S else S

• Problem: unmatched if may not
occur as the “then” (consequent)
clause of a containing “if”

statement → matched | unmatched

matched → if (E) matched else matched

 | other

unmatched → if (E) statement

 | if (E) matched else unmatched

30

Greedy ANTLR
• How to parse?

if (E1) if (E2) S1 else S2

• Which “if” is the “else” attached to?

S → if (E) S
 → if (E) if (E) S else S

S → if (E) S else S
 → if (E) if (E) S else S

S → if (E) S
S → if (E) S else S
S → other

if

E1 if

E2 S1 S2

if

E1 if S2

E2 S1

9/5/2013

6

31

Greedy ANTLR

• ANTLR v4 grammar for if stmts:

 S → if (E) S (else S)?

 S → X = E | …

• Leftmost derivations

• Greedy derivations

32

Limits of CFGs

• Syntactic analysis can’t catch all “syntactic”
errors

• Example: C++
– HashTable<Key,Value> x;

• Need to know whether HashTable is the name
of a type to understand syntax!
Problem: “<”, “,” are overloaded

• Iota:
– f(4)[1][2] = 0;

• Difficult to write grammar for LHS of assign
– may be easier to allow all exprs, check later

33

CFGs

• Context-free grammars allow concise
specification of programming languages

• CFG specifies how to convert token
stream to parse tree

– If unambiguous

– Or a derivation preference is designated

• Next time: implementing a top-down parser (leftmost derivation)

