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Where we are 

Source code 

(character stream) 

Lexical analysis 

Syntactic Analysis 

(specification) 

Token stream 

Abstract syntax tree 

(AST) 

Semantic Analysis 

if (b == 0) a = b; 

if ( b ) a = b ; 0 == 

if 
== 

b 0 

= 

a b 

; 
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What is Syntactic Analysis? 

Source code 

(token stream) 

{ 
 if (b == (0)) a = b; 
 while (a != 1) { 
      stdio.print(a); 
      a = a - 1; 
 } 
} 

if_stmt 
bin_op 

variable 

b 

constant 

0 

block 

while_stmt 
bin_op 

== != variable constant 

block 

expr_stmt 

Abstract Syntax 

Tree 

1 a call 
. 

stdio print variable 

a 

= 

... 

... 

... 

... 
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Parsing 

• Parsing: recognizing whether a program 
(or sentence) is grammatically well-
formed & identifying the function of each 
component. 

“I gave him the book” 
sentence 

subject: I verb:gave indirect object: 

 him 

object 

noun phrase 

article: the noun: book 
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Overview of Syntactic Analysis 

• Input: stream of tokens 

 

• Output: abstract syntax tree 

– Abstract syntax tree removes extra syntax 
a + b ≈ (a) + (b) ≈ ((a)+((b))) 

bin_op 

a + b 
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What Parsing doesn’t do 
• Doesn’t check many things: type 

agreement, variables declared, variables 
initialized, etc. 

– int x = true; 

– int y; z = f(y); 

 

• Deferred until semantic analysis 
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Specifying Language Syntax 

• First problem: how to describe language 
syntax precisely and conveniently 

• Last time: can describe tokens using 
regular expressions 

• Regular expressions easy to implement, 
efficient (by converting to DFA) 

• Why not use regular expressions (on 
tokens) to specify programming language 
syntax? 
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Limits of REs 
• Programming languages are not regular -- 

cannot be described by regular expressions 

 

• Consider: language of all strings that contain 
balanced parentheses (easier than PLs) 

–()     (())     ()()()    (())()((()())) 

–((   )(    ())  (()() 

 

• Problem: need to keep track of number of 
parentheses seen so far: unbounded counting 
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Limits of REs 
• RE = DFA 

• DFA has only finite number of states; 
cannot perform unbounded counting 

( ( ( ( ( 

) ) ) ) ) 

maximum depth: 5 parens 

Compiler 

Writer 

Regexes 
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Context-Free Grammars 
• A specification of the balanced-parenthesis 

language: 
S →  ( S ) S 

S →  ε 

• The definition is recursive 

• A context-free grammar 
– More expressive than regular expressions 

– S   =  (S) ε  =  ((S) S) ε = ((ε) ε) ε = (()) 

• If a grammar accepts a string, there is a 
derivation of that string using the 
productions of the grammar 
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• Terminals 
– Token or ε 

• Non-terminals 
– Syntactic variables 

• Start symbol  
– A special nonterminal is designated: S 

• Productions 
– Specify how non-terminals may be expanded to 

form strings 
– LHS: single non-terminal, RHS: string of 

terminals or non-terminals 

• Vertical bar is shorthand for multiple prod’ns 

S →  ( S ) S 

S →  ε 

Definition of CFG 
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RE is subset of CFG 

• Regular Expression for real numbers: 
      digit → [0-9]    

posint → digit+    
int → -? posint    
real → int . (ε | posint)  

• RE symbolic names are only shorthand: 
no recursion, so all symbols can be fully 
expanded: 
real → -? [0-9]+ . (ε | ([0-9]+)) 
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Sum grammar 

S →  E + S   |   E 

E → number   |   ( S ) 

     e.g.  (1 + 2 + (3+4))+5 

 

S → E + S 
S → E 
E → number 
E → (S)  

4 productions 

2 non-terminals: S, E 

4 terminals: (, ), +, number 

start symbol S 
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Derivation Example 

S →  E + S | E 

E → number | ( S ) 

Derive (1+2+ (3+4))+5: 

S → E + S → ( S ) + S → (E + S )+ S 
    → (1 + S)+S → (1 + E + S)+S 
    → (1 + 2 + S)+S →  (1 + 2 + E)+S 
    → (1 + 2 + ( S ) )+S → (1 + 2 + ( E + S ) )+S 
    → (1 + 2 + ( 3 + S ) )+S 
    → (1 + 2 + ( 3 + E ) )+S 
    → (1 + 2+ (3+4))+S 
    → (1 + 2+ (3+4))+E 
    → (1 + 2+ (3+4))+5 

replacement string 

 

non-terminal being expanded 
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Constructing a derivation 
• Start from start symbol: S 

• Productions are used to derive a sequence 
of tokens from the start symbol 

• For arbitrary strings α, β and γ   

and a production A → β  

A single step of derivation is  

 αAγ ⟹ αβγ 
– i.e., substitute β for an occurrence of A 

– (S + E) + E → (E + S + E)+E         

(A = S, β = E + S)  
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Derivation Example 

S →  E + S | E 

E → number | ( S ) 

Derive (1+2+ (3+4))+5: 

S → E + S → ( S ) + S → (E + S )+ S 
    → (1 + S)+S → (1 + E + S)+S 
    → (1 + 2 + S)+S →  (1 + 2 + E)+S 
    → (1 + 2 + ( S ) )+S → (1 + 2 + ( E + S ) )+S 
    → (1 + 2 + ( 3 + S ) )+S 
    → (1 + 2 + ( 3 + E ) )+S 
    → (1 + 2+ (3+4))+S 
    → (1 + 2+ (3+4))+E 
    → (1 + 2+ (3+4))+5 

replacement string 

 

non-terminal being expanded 
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• Tree representation of the 
derivation 

• Leaves of tree are terminals; 
in-order traversal yields string 

• Internal nodes: non-terminals 
• No information about order of 

derivation steps 

Derivation ⟹ Parse Tree 

S → E + S → ( S ) + S → (E + S )+ S → (1 + S)+S → (1 + E + S)+S  

    → (1 + 2 + S)+S →  … → (1 + 2 + ( S ) )+S → (1 + 2 + ( E + S ) )+S  

    → … → (1 + 2 + ( 3 + E))+S → … → (1 + 2+ (3+4))+5 

Parse 

Tree 

Derivation 

S →  E + S | E 

E → number | ( S ) 
(1+2+ (3+4))+5 

(  S  )   E 

S 

E  +  S 

E  +  S    

E + S 

( S ) 

1 

2 

3 

E 

E + S 
E 
4 

5 
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Parse Tree 

• Also called “concrete syntax”  

parse tree/ 
concrete syntax abstract 

syntax tree 

(Discards/abstracts 
unneeded information) 

(  S  )   E 

S 

E  +  S 

E  +  S    

E + S 

( S ) 

1 

2 

3 

E 

E + S 
E 
4 

5 
+ 

5 + 

+ 

3 4 

1 

2 + 
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Derivation order 
• Can choose to apply productions in any order; 

select any non-terminal 

E + S → 1 + S or E + E + S 

• Two standard orders: left- and right-most -- 

useful for different kinds of automatic parsing 

• Leftmost derivation: In the string, find the 
left-most non-terminal and apply a production 
to it.  E + S → 1 + S 

• Rightmost derivation: find right-most non-

terminal…etc.     E + S → E + E + S 
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Example 

• Left-most derivation 

S →E+S →(S) + S → (E + S )+ S → (1 + S)+S → 
(1+E+S)+S → (1+2+S)+S →  (1+2+E)+S → (1+2+(S))+S 
→ (1+2+(E+S))+S → (1+2+(3+S))+S → (1+2+(3+E))+S 
→ (1+2+(3+4))+S → (1+2+(3+4))+E → (1+2+(3+4))+5 

 

• Right-most derivation 

S → E+S → E+E → E+5 → (S)+5 → (E+S)+5 → 
(E+E+S)+5 →  (E+E+E)+5 → (E+E+(S))+5 → 
(E+E+(E+S))+5 → (E+E+(E+E))+5 → (E+E+(E+4))+5 
→ (E+E+(3+4))+5 → (E+2+(3+4))+5 → (1+2+(3+4))+5 

 

• Same parse tree: same productions chosen, diff. order 

S → E + S | E 

E → number | ( S ) 
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Associativity 
• + operator associates to right in parse tree 

regardless of derivation order 

 

 

 

• + associates to right because of right-
recursive production     S → E + S 

• In the example grammar, leftmost and 
rightmost derivations produce identical 
parse trees 

(1+2+(3+4))+5 

+ 

5 + 

+ 1 

+ 2 

4 3 
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An Ambiguous Grammar 

• Consider another grammar: 

 

S  →  S + S   |   S * S  |   number 

 

• Different derivations produce different 
parse trees: ambiguous grammar 

24 

Differing Parse Trees 
 

• Consider expression  1 + 2 * 3 

• Derivation 1: S → S + S → 1 + S → 1 + S * S 

    → 1 + 2 * S → 1 + 2 * 3 

• Derivation 2: S → S * S → S * 3 → S + S * 3 

    → S + 2 * 3 → 1 + 2 * 3 

S → S + S  | S * S | number 

1 2 3 
* 

+ 

1 2 3 

* 1 2 + ≠ 



9/5/2013 

5 

25 

Impact of Ambiguity 

1 2 3 
* 

+ 

1 2 3 

= 7 = 9 + 

• Different parse trees correspond to 
different evaluations! 

 

 

 

• Meaning of program not well defined 

* 
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Eliminating Ambiguity 
• Often can eliminate ambiguity by adding 

non-terminals & allowing recursion only 
on right or left 

 S  →  S + T  |  T 

 T  →  T * num  |  num 

  

• S/T separation enforces precedence 

• Left-recursion : left-associativity 

S 

S + T 

T * 3 T 

1 2 

27 

if-then-else 

• How to write a grammar for if stmts? 

 S → if (E) S else S 

 S → if (E) S 

 S → X = E | … 

 

• Is this grammar ok? 
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No—Ambiguous! 
• How to parse? 

if (E1) if (E2) S1  else S2 

 

 

 

 

 

 

 

 

 

• Which “if” is the “else” attached to? 

S  → if (E) S  
 → if (E) if (E) S else S 

S  → if (E) S else S 
 → if (E) if (E) S else S 

S → if (E) S 
S → if (E) S else S 
S → other 

if 

E1 if 

E2 S1 S2 

if 

E1 if S2 

E2 S1 
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Grammar for Closest-if Rule 

• Want to rule out  if (E) if (E) S else S 

• Problem: unmatched if may not 
occur as the “then” (consequent) 
clause of a containing “if” 

 
statement → matched  |  unmatched 

matched   → if (E) matched else matched 

   |    other 

unmatched   → if (E) statement 

   |    if (E) matched else unmatched 
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Greedy ANTLR 
• How to parse? 

if (E1) if (E2) S1  else S2 

 

 

 

 

 

 

 

 

 

• Which “if” is the “else” attached to? 

S  → if (E) S  
 → if (E) if (E) S else S 

S  → if (E) S else S 
 → if (E) if (E) S else S 

S → if (E) S 
S → if (E) S else S 
S → other 

if 

E1 if 

E2 S1 S2 

if 

E1 if S2 

E2 S1 
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Greedy ANTLR 

• ANTLR v4 grammar for if stmts: 

 S → if (E) S (else S)? 

 S → X = E | … 

 

• Leftmost derivations 

• Greedy derivations 
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Limits of CFGs 

• Syntactic analysis can’t catch all “syntactic” 
errors 

• Example: C++ 
– HashTable<Key,Value> x; 

• Need to know whether HashTable is the name 
of a type to understand syntax! 
Problem: “<”, “,” are overloaded 

• Iota: 
– f(4)[1][2] = 0; 

• Difficult to write grammar for LHS of assign 
– may be easier to allow all exprs, check later 
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CFGs 

• Context-free grammars allow concise 
specification of programming languages 

 

• CFG specifies how to convert token 
stream to parse tree 

– If unambiguous 

– Or a derivation preference is designated 
 

 

• Next time: implementing a top-down parser (leftmost derivation) 


