The X? Language Specification

Ross Tate
October 11, 2013

1 Lexing and Parsing

1.1 Core and Full Languages

v, == variable/function/method names v. == class/interface names v, = type-parameter names Vpe "= Uy | Ve
kind context © = v, ..., 1
type context I' o= wv,:7,... 0T
type T = v |vdr,...,my|TNT|T|L
type scheme o == (©)(T):7
expression e Uy | Vpe(T, ooy T)(ey oo e) | ewy(r,...,T)(e,...,e) | [e,...,¢e] | eHe | true | false | n | "string"
statement s = {s...s}|wv, =¢;|if (e) s else s | while (e) s | for (v, in €) s | return e;
interface ¢ = interface v.(0©) extends 7 {fun v,o;...fun v,o; fun v,o s...fun v,o s}
class ¢ == class v.(O)(T') extends 7 {s...s super(e,...,e); fun v,o s...fun v,o s}
program p = s|s...sp|funv,os...funv,ospliplep
function context A 1= | A vy.0
class context ¥ == @ |V, interface v.(0) extends 7 {A;v,,...,1,} | ¥, class 1.(O) extends 7 {A}

Figure 1: Cubex Core Language Grammar, which gives the grammar for the Cubex core language, along with definitions
for the formal constructs A and ¥, which are not part of the language per se but are useful in our formalization of the type
system. Note that p stands for “program” and defines a syntactically-valid program in the Cubex core language. Note also
that lists, represented with an elipsis, may consist of zero, one, or more elements. So a,...,a may be the empty string, a, or
some list of as separated by commas.

We distinguish between the Cubex core language, which is specified by the grammar in Figure 1.1, and the full language.
The full language differs from the core language in a number of ways:

e It includes the following unary and binary operators, listed in order of precedence, which are (except for ++) short for
method calls on arbitrary classes (their signatures are those that are given for the built-in classes at the end of this
document). All operators are left-associative.

e

7.
8.

Unary prefixes — and ! short for negative and negate respectively.
Multiplicative operators *, /, and % short for times, divide, and modulo respectively.

Additive + and - short for plus and minus respectively.

. Range operators .., <., .<, <<, ..., and <.., with the last two being unary suffixes; the binary operators are

shorthand for through using additional Boolean parameters to indicate whether to include the lower and/or
upper bounds; the unary suffixes are shorthand for onwards using an additional Boolean parameter to indicate

inclusiveness.

. The binary operator ++, (actually part of the core language), which implements appending of iterables, denoted

in the grammar by —++.

. Inequality operators <, <=, >=, and > short for lessThan with an additional Boolean parameter indicating strict-

ness, and with order reversed for >= and >.
Equational operators == and !=, short for equals and equals followed by negate.

Boolean operators & short for and followed by | short for or.

e Characters in the core language which have no obvious ASCII equivalent are represented in the full language in ASCII
as follows:

Thing for T and Nothing for L.
— & for A and | for V.
— & for N.

— < for (and > for).
e Expressions (denoted e in the grammar) may be surrounded by parentheses.

e If there are no type parameters (i.e. when (7,...,7) is the empty list), a class/interface/function specification can drop
the ().

e When calling a function/method/constructor with no type parameters, the () may be dropped.
e If the else case is {}, it can be dropped.

e In the full language, unimplemented and implemented methods of interfaces may mixed together, unlike in the core
language where all of the latter must follow all of the former.

e If a class or interface just extends T, the extends clause can be omitted.
e If the call to super has no arguments, it can be omitted.

e If a function implementation is simply return of some expression, the return can be abbreviated to =. For example,
fun foo(y : Integer) : Integer return y * 2;
may be abbreviated to

fun foo(y : Integer) : Integer =y * 2;

Finally, there is no name hiding. If a judgement requires binding a name twice, that judgement is ill formed and does
not hold. However, all the different kinds of context are different namespaces. So a name can be bound both in A and I
To clarify, I and T" use the same namespace, so a variable must not be bound in both.

1.2 Name, Keywords, Literals, etc.

The grammar uses v with subscripts to denote both various kinds of names. We enforce a distinction between these
kinds. Variables and function/method names (v,) are a lower-case letter followed by letters, numbers, and/or underscores.
Class/interface names (v.) are an upper-case letter followed by one or more letters, numbers, and/or underscores. Type
parameters (v,) are an upper-case letter alone. In the formalism we refer to all of these collectively as just v.

Key words (i.e. any words receiving special treatment in the core language) cannot be used as names or variables.

String literals (denoted in the grammar by "string") have no escaping and cannot contain white space besides the space
character. Integer literals (denoted in the grammar by n) are in decimal only.

Finally, note that the grammar contains various other syntactic artifacts (semicolons, brackets, etc.) whose only legal
uses in the language (outside of comments and string literals) are fully specified by their role in the grammar.

1.3 Whitespace and Comments

Unless it occurs inside a string literal, white space is disregarded except for its role of separating names and other tokens
(e.g. “: =7 is not the same as “:=" and only the latter can be used in a variable assignment). Unless it occurs inside a string
literal, # starts a comment that extends to the end of the line. Unless it occurs inside a string literal, ¢ starts a comment
that extends to the matching ’, where these comments can be nested inside each other. Comments are disregarded except

for their role of separating names and other tokens.

2 Validating

The following formalizes when a program is valid, incorporating type validity, type checking, and class/interface validation.
Judgements take the form “(context) b (property)”. ¥ indicates the classes and interfaces in scope, what they directly
inherit, and what their methods are. © indicates the type parameters in scope. A indicates the function names in scope and
what their type scheme is. T" typically indicates the immutable variable names in scope and what their type is. r typically
indicates the mutable variable names in scope and what their type is. The following is a summary of the judgements used in
this formalism and where their definitions can be found.

Judgement Meaning Figure

U |e o<t T is a subtype of 7/ 2
v F v(©) extends 7 generic class/interface v(0) directly inherits 7 2
VNG F T<T I is a subcontext of T’ 2
v|e F oro o and ¢’ are equivalent type schemes
v|e F rv:o method v of type 7 has type scheme o 3
v F 2@®).v:o generic class/interface #(©) has method v with type scheme o 3
U O For 7 is a valid type 4
U|e Fr T T is an inheritable type with constructable component 7 4
U|e F T I' is a valid type context 4
v|e F oo o is a valid type scheme 4
UVIO|A|T F e:T expression e has type 7 5
V|IO|A|IT|TE s: IV mutable variables I' are available after valid statement s 6
V| O|A|T|TF s TV like above and all returns have type 7 with b = true guaranteeing a return 7
VNG Fr:A A are all the methods of 7 8
v F 2(0): A A are the direct methods of generic class/interface ©(©) 8
v|e Foriv 7 provides an implementation of method v 9
U|A|T g0 i is a valid interface with signature U’ 10
U|A|T Foe: 0| A c is a valid class with signature ¥’ and constructor A’ 10
U|A|T Fop p is a valid program 11

Fop p is a valid program in the initial environment 11
’\I/|@|—T<ZT U+ 1(O) extends T v|loerr<:T \I/|@|—0‘%0"

V|Okv<v V|OrL<T V| OkFr<:T
U|OFr <7 V| OkFr<imm VY| OFT<im
UV |OFnNm<:T U|OFr<imNm
foralli, Y|OF7 <7/ and T |OF7/ <7 V|okFr< 7
U |OFv(r,...,Tn) < V(T{,...,T}) U | © - Iterable(r) <: Iterable(r’)
Ut vy, ..., v,) extends 7/
V| |OF 71— T,...,vp— 7] <:7 interface v(0O) extends 7 {...} in ¥ class v(0O) extends 7 {...} in ¥
U OFv(m,...1) <7 U+ v(O) extends T U F v(O) extends 7
V|joFr<:7 U|OFT < TV viorD < IV
vV ioFg <o UV|Ortv:r,I<iv:7 IV UV |Okrv:7,I'<: IV

\Il|@,(;)|—1—‘<:F’ \Il|@,él—F’<:F \Il|@,él—7'<:T’ ‘I/|®7(':)|—T/<ZT
U|OF(O)D): T~ (O)I): 7

Figure 2: Subtyping

’\I/|9|_T.Z/IU Wl—u(@).u:a‘

Uk o(vy,...,up) V0o
V| OkFlv:o U |OF D, .., Tn) V01 Ty Uy > Ty
interface 7(©) extends 7 {...,vo,...;...} in ¥ class 7(©) extends 7 {...,vo,...} in ¥
UFEo©)\v:o UEo(O)v:o

Figure 3: Method Lookup

(v|O6FT U[OF.7 U[OFT U[O0]

U|Ok:T vin ©
V| OkFT V| OFr T U|ekrL U Ok
interface v(vy,...,v,) extends 7 {...} in U foralli, T |OFT
U |Obr v(r,...,Tn)
class v(vy,...,vp) extends 7 {...} in ¥ foralli, P|OFT
VNG Futremn) V(T oy Tn)

U|Ok:T U0kt 7

foral7, ®¥|OF7<:7 and T|OF7 <7 implies T|OFT<:7T
U|Okrn7' A
U|OF: N7
foralli, VU |OF 7 U[O,60FT U|0,0F7
VIOFv T, Vi Ty U|OF(O)D): T

Figure 4: Type Validity

(W[O[A[TFe:r]

U|O|A|TFe:7 U|OFT<:7
V|io|A|Tke:7

v:7inT
V|O|A|TFv:T
for all 4, VANCR
VWV, Um) (D1t Ty e U 0 7))t T iR A
foralli, Y|O|A|Tke :fivr= T, ., Vm > Tl
UIO|A|TEv(r,. .., m)(€1y. - sen) TV = T1, oy U — T
for all 4, U Ok
V| |O|A|Tke: T
UV OFTw: (V1o V) (D1 i 1y Un 2 Tn) 0 T
foralli, W|O|A|TFe it Ty, Vm > T
UIO|A|TFev(r,...,Tm)(€1,...,€n) : T[V1 > Ti,.oo, U > Tig
foralli, Y|O|A|Tke:T foralli, W|O|A|lFe;:Iterable(r)
U|O|A|TF[er,...,e,]: Iterable(r) U|©|A|TH e Hes: Iterable(r)
U |©|A|TF true : Boolean() U |©|A|Tt false : Boolean()
U|O|A|TFn: Integer() U|O|A|TF "string" : String()

Figure 5: Type Checking Expressions

(W|O[A|T|TFs:T|

U|O|A|T|TFs: TV T|OFD <:T” UIO|A|T|DFs: T v:n 7,1
T|O|A|T|TFs:T” UIO|A|T|Drs: TV 7 v:rT"

foralli, W|O|A|l|T;1Fs;:T;
TIO|A|[T|Tok{s1...on}:Tn
U|O|A|T,TFe:T VIO |A|T, v Fe:7
U|O|A|T|IFv=e:T,v:T TIO|A|T|Dwv:rFv=¢:T,v:7, 1
U|O|A|D,TFe:Boolean() W|O|A|T|Tks :IY U|O|A|[T|TFsy:T”
U|O|A|T|TFif () s else sy : T
U|O|A|T,TFe:Boolean() U|O|A|T|IFs:T
U|O|A|T |+ while (¢) s: T
U|O|A|T,TFe:Tterable(r) W|O|A|T|[,v:rks:T
U|O|A|T|IFfor (vine)s:T

Figure 6: Type Checking Statements

(U[O[A|T|TH:s:T)

U|O|A|T | Fbrue . [
U |O|A|T | Halse 5. v

U|O|A|T T s: IV T|OFD <17 U|O|A|T|TF s: T v 70 7, T
U|O|A|T|TF s T U|O|A|T|TF s: T, 0 7 v 7,17
for all 4, VO |A|T|Dig s Ty

b = true implies there exists ¢ with b; = true
U|O|A|T,Tke:7 U|O|A|IDD,v: 7 Fe: 7

\I/|®|A|F|f}—£alsey::e;:f,yzf' \I/|@|A|F\f,u:i‘,f’}—ﬁalsey::e;:F,V:?’,F’
U|O|A|T,TFe:Boolean() U|[O|A|[T|IF s :IY U|O|A|[T|DH sy T
U |O|A|T|TFLf (e) 51 else s : IV
U|O|A|T,T'Fe:Boolean() V|O|A|T|THs:T
U |O|A|T | HRlse while (¢) s: T
U|O|A|T,TFe:Iterable(?) W|[O|A|T|[,v:7tbs:T
U|O|A|T|DHRse for (vine)s: T
T|O|A|DTTke:T
U|O|A|T | Fve return e;: T

Figure 7: Type Checking Returns

w|OFT:A W

|—V<@>:A‘

UV|OkFr:A T|OFT A
U |OokFrnt AA
Uk,)t A Uk o(vy,...,v,) extends T L7 e EFAY

V| |OkFT:v

forall vo in A, forall Vo' in A, v=v" implies V|v,...,v,Fo=x0o
U|OFI(r,...,T) : (AUAN v = 71,y vy > Ty

interface 7(©) extends 7 {A;...} in U class 7(O) extends 7 {A} in ¥
UE5(0): A U (0): A

Figure 8: Method-Context Lookup

UV|OFkT7:v Uk o(vy,...,vy)extends 7 U vy, v T
U|OFmNm:v U |OFo(r,...,Th) v
interface v(v,...,v,) extends 7 {...;...,v,...} in ¥ class 0{vq,...,v,) extends 7 {...,vo,...} in ¥
Uk o(T1,...,Tn) i V Uk o(r,...,Th) i V

Figure 9: Method-Implemented Check

(U|A|THi:

U|A|THe: WA

|0k 7
U’ = interface v(0) extends 7 {v101,...,Un0n, 161, Vala;V1,...,Un}
for all i, U, 0| Ok oy for all 4, U, 0| Ok g
U9 | OFv(O): A
for all (©)(T') : 7 in A/, for all 7 in ©, 7' not in ©

for all ’L'7 OA'Z = (@z>(F,) LT \I/,\I’/ | @791' | A,A/ | r | F7 F:_:'ue §7 : F;

¥ | A |T'F interface v(0) extends 7 {fun vy04;..

L4 | (C] |—7: T
U’ = class v(O) extends 7 {vi01;...;vp00; } A" = v(0)(I) : v(O)
for all 4, U, 0 |OFo;

A ZENCEEN Iy=T for all 4, U0 [O|AAN|D Ty Fsi: Ty

7(e1,...,ex) = T() or U0 |O|A AT,y - 7er,... e): 7

U, 9 |OFv(O): A
for all Z(©)(T") : 7 in A", for all 7’ in O, 7’ not in ©
for all i, g; = <@1>(Fz) LT \I/,\I// | 6791 | A,A/,A” ‘ F,fm | Fz F!:r:'ue .§2 : F;
for all Do in A", UV OFv(O): b
U | A|TF class v(0)(I') extends 7 {s; ...s,, super(e,...,ex); fun vyoy 8, ... fun v,o, §,}: 0 | A

Figure 10: Class and Interface Checking

fun vyo,; fun 0461 = 81 .. fun Do = 851 U

(U|A|TEp Fp

Py =

v | Z | A | r ‘ g l_gngable(String) s: T
U|A[TFs
['y=2 foralli, W | |A|T | j }—ll’fcerable<3tring> s;: Iy W | A | I,T,Fp

U|A|TkFs1...8, D

A/ = A,V1<@1>(F1) : Tl>~~~7Vn<@n>(Fn) L Tn)
foralli, W|©;FT; U|O;F7 W|O;|A|T|T;Hres, T,

U A|TFp
U|A|THFfun v1(01)(T1) : 71 s1...fun v, (0,)(Ty) : 7 Sp P
U|A|ITHi: ¥V UV |A|Tkp U|A|Tkce: U |A TV |AA|TEHD
U|A|THip U|A|Tkep

class Iterable(E) extends T { },
class Boolean() extends T {

b

negate()() : Boolean();

and()(that : Boolean()) : Boolean();

or()(that : Boolean()) : Boolean();

through() (upper : Boolean(), includeLower : Boolean(), includeUpper : Boolean()) : Iterable(Boolean());
onwards()(inclusive : Boolean()) : Iterable(Boolean());

lessThan()(that : Boolean(), strict : Boolean()) : Boolean();

equals()(that : Boolean()) : Boolean();

—_——~

class Integer() extends T {

b

negative()() : Integer();

times()(factor : Integer()) : Integer();

divide()(divisor : Integer()) : Iterable(Integer());

modulo()(modulus : Integer()) : Iterable(Integer());

plus()(summand : Integer()) : Integer();

minus()(subtrahend : Integer()) : Integer();

through() (upper : Integer(), includeLower : Boolean(), includeUpper : Boolean()) : Iterable(Integer());
onwards()(inclusive : Boolean()) : Iterable(Integer());

lessThan()(that : Integer(),strict : Boolean()) : Boolean();

equals()(that : Integer()) : Boolean();

class Character() extends T {

unicode()() : Integer();
equals()(that : Character()) : Boolean();

class String() extends Iterable(Character()) { equals()(that : String()) : Boolean(); }
character()(unicode : Integer()) : Character(),string()(characters : Iterable(Character)) : String()
input : Iterable(String())

Vo [A |[Tobp

Fp

Figure 11: Program Checking

