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Announcements 

Prelim3 Results 
• Mean 62.2 ± 15.5 (median 64.5), Max 97 

• Pickup in Homework Passback Room 
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Announcements 

How to improve your grade? 

 

Submit a course evaluation and drop lowest 
homework score 

• To receive credit, Submit before Monday, May 7th 
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Announcements 
FlameWar Pizza Party was great! 
• Winner: Team MakeTotalDestroy 

   Kenny Deakins and Luis Ruigomez 
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Announcements 

Final Project 

Design Doc sign-up via CMS 

  sign up Sunday, Monday, or Tuesday 

  May 6th, 7th, or 8th    

Demo Sign-Up via CMS. 

  sign up Tuesday, May 15th  

  or Wednesday, May 16th   

CMS submission due: 

• Due 6:30pm Wednesday, May 16th  
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Big Picture about the Future 
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How a processor works?  How a computer is organized? 
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What’s next? 

More of Moore 
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Moore’s Law 
Moore’s Law introduced in 1965 

• Number of transistors that can be integrated on a single 
die would double every 18 to 24 months (i.e., grow 
exponentially with time). 

Amazingly visionary  

• 2300 transistors, 1 MHz clock (Intel 4004) - 1971 

• 16 Million transistors (Ultra Sparc III) 

• 42 Million transistors, 2 GHz clock (Intel Xeon) – 2001 

• 55 Million transistors, 3 GHz, 130nm technology, 250mm2 
die (Intel Pentium 4) – 2004 

• 290+ Million transistors, 3 GHz (Intel Core 2 Duo) – 2007 

• 731 Million transisters, 2-3Ghz (Intel Nehalem) – 2009 

• 1.17 Billion transistors, 2-3Ghz (Intel Westmere) – 2011 
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Processor Performance Increase 
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Power Limits 

Hot Plate 

Rocket Nozzle 

Nuclear Reactor 

Surface of Sun 

Xeon 
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What to do with all these transistors? 

Multi-core 
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Multi-core 

The first transistor 

• on a workbench at  

 AT&T Bell Labs in 1947 

• Bardeen, Brattain, and Shockley 

• An Intel Westmere 

– 1.17 billion transistors 

– 240 square millimeters 

– Six processing cores 

http://www.theregister.co.uk/2010/02/03/intel_westmere_ep_preview/ 



14 

What to do with all these transistors? 

Many-core  

and Graphical Processing units 
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AMDs Hybrid CPU/GPU 
AMD’s Answer: Hybrid CPU/GPU 
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Cell 

IBM/Sony/Toshiba 

 

Sony Playstation 3 

 

PPE 

SPEs (synergestic) 
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Parallelism 

Must exploit parallelism for performance 

• Lots of parallelism in graphics applications 

• Lots of parallelism in scientific computing 

SIMD: single instruction, multiple data 

• Perform same operation in parallel on many data items 

• Data parallelism 

MIMD: multiple instruction, multiple data 

• Run separate programs in parallel (on different data) 

• Task parallelism 
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NVidia Tesla Architecture 
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FIGURE A.3.1 Direct3D 10 graphics pipeline. Each logical pipeline stage maps to GPU hardware or to a GPU processor. 
Programmable shader stages are blue, fixed-function blocks are white, and memory objects are grey. Each stage processes a vertex, 
geometric primitive, or pixel in a streaming dataflow fashion. Copyright © 2009 Elsevier, Inc. All rights reserved. 

Why are GPUs so fast? 

Pipelined and parallel 

Very, very parallel: 128 to 1000 cores 
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FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 streaming 
multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The 
processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two special 
function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a shared memory. Copyright © 2009 
Elsevier, Inc. All rights reserved. 
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General computing with GPUs 

Can we use these for general computation? 

Scientific Computing 

• MATLAB codes 

Convex hulls 

Molecular Dynamics 

Etc. 

 

NVIDIA’s answer: 
Compute Unified Device Architecture (CUDA) 

• MATLAB/Fortran/etc.  “C for CUDA”  GPU Codes 
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What to do with all these transistors? 

Cloud Computing 
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Cloud Computing 

Datacenters are becoming a commodity 

Order online and have it delivered 

• Datacenter in a box: already set up with 

commodity hardware & software (Intel, Linux, 

petabyte of storage) 

• Plug data, power & cooling and turn on 

– typically connected via optical fiber 

– may have network of such datacenters 
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Cloud Computing = Network of Datacenters 



Cloud Computing 

Enable datacenters to coordinate over vast  

 distances 

• Optimize availability, disaster tolerance, energy 

• Without sacrificing performance 

• “cloud computing” 

Drive underlying technological innovations. 
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The promise of the Cloud 

• A computer utility; a commodity 

• Catalyst for technology economy 

• Revolutionizing for health care, financial systems,  

    scientific research, and society 

 

However, cloud platforms today  

• Entail significant risk: vendor lock-in vs control 

• Entail inefficient processes: energy vs performance 

• Entail poor communication: fiber optics vs COTS endpoints 

 

Vision 
Cloud Computing 
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Why don’t we save more energy in the cloud? 
 
No one deletes data anymore! 
• Huge amounts of seldom-accessed data 

Data deluge 
• Google (YouTube, Picasa, Gmail, Docs), Facebook, Flickr 
• 100 GB per second is faster than hard disk capacity growth! 
• Max amount of data accessible at one time << Total data 

New scalable approach needed to store this data 
• Energy footprint proportional to number of HDDs is 

 not sustainable 
 

 
 
 

Example: Energy and Performance 
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What to do with all these transistors? 

Embedded Processors 
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Where is the Market? 
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Where is the Market? 
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Where is the Market? 
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Where to? 

Smart Dust…. 



37 

Security? 

Cryptography and security… 
TPM 1.2 

IBM 4758 
Secure Cryptoprocessor 
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Security? 

Smart Cards… 
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What to do with all these transistors? 

You could save the world one day? 
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Alan Turing’s Bombe 
Used to crack Germany’s  
enigma machine 

ENIAC - 1946 
First general purpose  
electronic computer.  Designed  
to calculate ballistic trajectories 
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Graphics 

Scientific  
Computing 

Embedded 
Computing 

Smart Dust  
& Sensor Networks 

Security 

Cryptography 

Games 

Quantum  
Computing? 

Cloud 
Computing 

Save the 
world? 
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Survey Questions 

Are you a better computer scientist and software 
engineering knowing “the low-level stuff”? 

 

How much of computer architecture do software 
engineers actually have to deal with? 

 

What are the most important aspects of computer 
architecture that a software engineer should 
keep in mind while programming? 
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Why? 
These days, programs run on hardware... 

 … more than ever before 

 

Google Chrome 

 Operating Systems 

 Multi-Core & Hyper-Threading 

 Datapath Pipelines, Caches, MMUs, I/O & DMA 

 Busses, Logic, & State machines 

 Gates 

 Transistors 

 Silicon 

 Electrons 
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Why? 
Your job as a computer scientist will require 

knowledge the computer 

Research/University 

 

 

Industry 

 

 

 

Government 
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Where to? 
CS 3110: Better concurrent programming 
 

CS 4410/4411: The Operating System! 
 

CS 4420/ECE 4750: Computer Architecture 
 

CS 4450: Networking 
 

CS 4620: Graphics 
 

CS 4821: Quantum Computing  
 

MEng 

5412—Cloud Computing,  5414—Distr Computing, 

5430—Systems Secuirty,  

5300—Arch of Larg scale Info Systems 

And many more… 



46 

Thank you! 

If you want to make an apple pie from scratch, you must first 
create the universe. 

– Carl Sagan 


