Multicore and Parallel Processing

Hakim Weatherspoon
CS 3410, Spring 2012
Computer Science
Cornell University

P & H Chapter 4.10-11, 7.1-6

Administrivia
FlameWar Games Night Next Friday, April 27t

* 5pmin Upson B17
* Please come, eat, drink and have fun

No Lab4 or Lab Section next week!

Administrivia
PA3: FlameWar is due next Monday, April 23

* The goal is to have fun with it
e Recitations today will talk about it

HW6 Due next Tuesday, April 24th

Prelim3 next Thursday, April 26t

ITTOOK A LOT OF WCRK, BUT THIS

LATEST LINUX PATCH ENABLES SUPFCRT
FOR MACHINES WITH Y,096 CPUs,
UP FROM THE OLP LIMIT OF 1,024.

/ DO YOU HAVE SUPPCRT FOR SMOOTH
FULL-SCREEN FlasH VDEDYET?

NO, BUTWHO USES 74477)

\

O &0

Pitfall: Amdahl’s Law

Execution time after improvement =
affected execution time

amount of improvement
+ execution time unaffected

T _ Taffected 4+ T

improved unaffected

Improvemen factor

Pitfall: Amdahl’s Law

Improving an aspect of a computer and expecting a
proportional improvement in overall performance

T _ Taffected + T

improved unaffected

Improvement factor

Example: multiply accounts for 80s out of 100s

 How much improvement do we need in the multiply
performance to get 5% overall improvement?

Scaling Example

Workload: sum of 10 scalars, and 10 X 10 matrix
sum

e Speed up from 10 to 100 processors?
Single processor: Time = (10 + 100) % t_,

10 processors

100 processors

Assumes load can be balanced across processors

Scaling Example
What if matrix size is 100 x 1007

Single processor: Time = (10 + 10000) x t_,

10 processors

100 processors

Assuming load balanced

Goals for Today

How to improve System Performance?
* Instruction Level Parallelism (ILP)
* Multicore

— Increase clock frequency vs multicore

e Beware of Amdahls Law

Next time:

* Concurrency, programming, and synchronization

Problem Statement
Q: How to improve system performance?
- Increase CPU clock rate?
- But I/O speeds are limited
Disk, Memory, Networks, etc.

Recall: Amdahl’s Law

Solution: Parallelism

10

Instruction-Level Parallelism (ILP)
Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?

A: Deeper pipeline
— E.g. 250MHz 1-stage; 500Mhz 2-stage; 1GHz 4-stage; 4GHz
16-stage

Pipeline depth limited by...
— max clock speed (less work per stage = shorter clock cycle)

— min unit of work
— dependencies, hazards / forwarding logic

11

Instruction-Level Parallelism (ILP)
Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?
A: Multiple issue pipeline

— Start multiple instructions per clock cycle in duplicate stages

12

Static Multiple Issue
Static Multiple Issue
a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together
* Packages them into “issue slots”

Q: How does HW detect and resolve hazards?
A: It doesn’t.

- Simple HW, assumes compiler avoids hazards

Example: Static Dual-Issue 32-bit MIPS

* |nstructions come in pairs (64-bit aligned)
— One ALU/branch instruction (or nop)
— One load/store instruction (or nop)

13

MIPS with Static Dual Issue

Two-issue packets

* One ALU/branch instruction
* One load/store instruction

* 64-bit aligned

— ALU/branch, then load/store
— Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n+4 Load/store IF ID =4 MEM WB

n+8 ALU/branch IF ID EX MEM WB

n+12 Load/store IF ID EX MEM wWB

n+16 ALU/branch IF ID EX \ISY WB
n+ 20 Load/store 1= ID EX MEM wWB

Scheduling Example

Schedule this for dual-issue MIPS

Loop: 1w $t0, 0($s1) # $tO=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: | nop Tw $t0, 0($sD) 1

addi , $s1,-4 nop 2
addu , $t0, $s2 nop 3
bne , $zero, Loop | sw , 4($s1) 4

15

Loop:

Loop:

Scheduling Example

Compiler scheduling for dual-issue MIPS...

lw $to, 0($s1)
lw $t1, 4($s1)
addu $to, $to, $s2
addu $t1, $t1, $s2
sw $to, 0($s1)
sw $tl, 4(%$s1)
addi $s1, $s1, +8
bne $s1, $s3, TOP

ALU/branch slot
nop

nop

addu $to, $to, $s2
addu $t1, $t1, $s2
addi $s1, $s1, +8
bne $s1, $s3, TOP

$t0 = A[i]

$t1 = A[i+1]

add $s2

add $s2

store A[1]

store A[i+1]

increment pointer

continue if $sl!=end
Load/store slot cycle
lw $to, 0(%$s1) 1
Iw $t1, 4($s1) p)
nop 3
sw $to, 0(%$s1) 4
sw $t1, 4(%$s1) 5
nop 6

16

Loop:

Loop:

Scheduling Example

Compiler scheduling for dual-issue MIPS...

lw $to, 0($s1)
lw $t1, 4($s1)
addu $to, $to, $s2
addu $t1, $t1, $s2
sw $to, 0($s1)
sw $tl, 4(%$s1)
addi $s1, $s1, +8
bne $s1, $s3, TOP

ALU/branch slot

nop

addi $s1, $s1, +8
addu $to, $to, $s2
addu $t1, $t1, $s2
bne $s1, $s3, Loop

$t0 = A[i]

$t1 = A[i+1]
add $s2

add $s2

store A[1]

store A[i+1]

increment pointer

continue if $sl!=end

Load/store slot cycle
lw $to, 0(%$s1) 1
Iw $t1, 4($s1) p)
nop 3
sw $to, -8($sl) 4
sw $t1, -4($s1) 5

17

Limits of Static Scheduling

Compiler scheduling for dual-issue MIPS...
lw $to, 0($s1) # load A

addi $to, $to, +1 # increment A

sw $to, 0($s1) # store A

lw $to, 0($s2) # load B

addi $to, $to, +1 # increment B

sw $to, 0($s2) # store B
ALU/branch slot Load/store slot cycle
nop lw $to, 0(%$s1) 1
nop nop 2
addi $to, $to, +1 nop 3
nop sw $to, 0(%$s1) 4
nop lw $to, 0(%$s2) 5
nop nop 6
addi $to, $to, +1 nop Vs
nop sw $to, 0(%$s2) 8

Dynamic Multiple Issue
Dynamic Multiple Issue

a.k.a. SuperScalar Processor (c.f. Intel)

 CPU examines instruction stream and chooses multiple
instructions to issue each cycle

* Compiler can help by reordering instructions....
... but CPU is responsible for resolving hazards

Even better: Speculation/Out-of-order Execution
e Execute instructions as early as possible
* Aggressive register renaming
e Guess results of branches, loads, etc.
Roll back if guesses were wrong
* Don’t commit results until all previous insts. are retired

19

Does Multiple Issue Work?
Q: Does multiple issue / ILP work?
A: Kind of... but not as much as we’d like
Limiting factors?
* Programs dependencies

* Hard to detect dependencies = be conservative
— e.g. Pointer Aliasing: A[0] += 1, B[0] *= 2;

Hard to expose parallelism
— Can only issue a few instructions ahead of PC

Structural limits
— Memory delays and limited bandwidth

Hard to keep pipelines full

20

Power Efficiency
Q: Does multiple issue / ILP cost much?

A: Yes.
- Dynamic issue and speculation requires power

CPU Year Clock Pipeline Issue Out-of-order/ Cores Power
Rate Stages width Speculation

1486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
UltraSparc Il 2003 1950MHz 14 4 No 1 90W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W
Core 2006 2930MHz 14 4 Yes 2 75W
UltraSparc T1 2005 1200MHz 6 1 No 8 70W

- Multiple simpler cores may be better?

pA

-]
-
=
o
L
| =
o
i
IE
L]
=
E
I—.

2,000,000,000 Dual-core Itanium 2 . scuce i

1,000,000,000 —

100,000,000

Curve shows ‘Moora's Law"

10,000,000 — transistor count doubding -

avary Lwo years

1,000,000 — 486.‘*’}

100,000 286f;

"8088

_*8080
2390 40048008

10,000 —

®GTI00

':""" =°' -I'l..'.'l

Npnirs l.l.lll"ir.-'lll:.;-.-l-.;-. '!‘.-I;Klo

1E‘__" 2 Duo
Itanlum 2
K8

P4, += . Atom

o 1
2 LT

-
- ke @RI
(=]

L s

“Pentium

1980

2000 2008

Why Multicore?

Moore’s law
* A law about transistors
* Smaller means more transistors per die
* And smaller means faster too

But: Power consumption growing too...

23

Watts/cm’

10000 p

1000

-d
o
o

10

Power Limits

L
S I I E E EEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEENEEEENN

- Surface of Sun

'Nuclear Reactor

L 4

Pentium lll ® processor
Pentium Il ® processor

Pentium Pro ® processor
Pentium ® processor

'Hot Plate

{386
- 9486

1.5 1p D.7u O.5p D.35p 0.254 0.18p 0.13u 0.1u 0.07p

Rocket Nozzle
E>II1/

Xeon

24

Power Wall
Power = capacitance * voltage? * frequency
In practice: Power ~ voltage3

Reducing voltage helps (a lot)
... S0 does reducing clock speed
Better cooling helps

The power wall
* We can’t reduce voltage further
 We can’t remove more heat

25

Why Multicore?

Performance 1.2x Single-Core
Power _1.7)(Overclocked +20%
Performance 1.0x

Single-Core

Performance - 1.6X pual-Core
Power -- 1.02x Underclocked -20%

26

Inside the Processor

AMD Barcelona Quad-Core: 4 processor cores

HT PHY, link 1 |Slow |/o

128-bit FPU

Load/| L1 Data
2MB Store | Cache

Shared .

Cache | Fetch/ | ct
Decode/ | L1 Instr
Branch | Cache

'] Northbridge

HT PHY, link 2

_L.‘

P s
-

SPEAN

HT PHY, link 3

Ty S S AE

| HT PHY, link 4 |Slow I/O

27

D
D
R
P
H
Y

Inside the Processor

|

QP §

'0 anc

e e ——————— —— e —— - —

=Y

i LTSGR N

Hyperthreading
vs. AT

Multi-Core vs. Multi-Issue

Programs:
Num. Pipelines:
Pipeline Width:

Hyperthreads (Intel)
* |llusion of multiple cores on a single core
* Easy to keep HT pipelines full + share functional units

29

Fxamnle- All of the gbove

30

Parallel Programming
Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
e Partitioning work
e Coordination & synchronization
e Communications overhead
* Balancing load over cores

* How do you write parallel programs?
— ... without knowing exact underlying architecture?

31

Work Partitioning

Partition work so all cores have something to do

32

Load Balancing

Load Balancing
Need to partition so all cores are actually working

33

If tasks have a serial part and a parallel part...

Amdahl’s Law

Example:

ste
ste
ste

0 1: divide input data into n pieces
0 2: do work on each piece

0 3: combine all results

Recall: Amdahl’s Law

As number of cores increases ...

* time to execute parallel part? goes to zero
* time to execute serial part? Remains the same

e Serial part eventually dominates

34

Amdahl’s Law

Parallel Programming
Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
e Partitioning work
e Coordination & synchronization
e Communications overhead
* Balancing load over cores

* How do you write parallel programs?
— ... without knowing exact underlying architecture?

36

