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Administrivia
FlameWar Games Night Next Friday, April 27t

* 5pmin Upson B17
* Please come, eat, drink and have fun

No Lab4 or Lab Section next week!



Administrivia
PA3: FlameWar is due next Monday, April 23

* The goal is to have fun with it
e Recitations today will talk about it

HW6 Due next Tuesday, April 24th

Prelim3 next Thursday, April 26t



ITTOOK A LOT OF WCRK, BUT THIS

LATEST LINUX PATCH ENABLES SUPFCRT
FOR MACHINES WITH Y,096 CPUs,
UP FROM THE OLP LIMIT OF 1,024.

/ DO YOU HAVE SUPPCRT FOR SMOOTH
FULL-SCREEN FlasH VDEDYET?

NO, BUTWHO USES 74477 )
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Pitfall: Amdahl’s Law

Execution time after improvement =
affected execution time

amount of improvement
+ execution time unaffected

T _ Taffected 4+ T

improved unaffected

Improvemen factor




Pitfall: Amdahl’s Law

Improving an aspect of a computer and expecting a
proportional improvement in overall performance

T _ Taffected + T

improved unaffected

Improvement factor

Example: multiply accounts for 80s out of 100s

 How much improvement do we need in the multiply
performance to get 5% overall improvement?



Scaling Example

Workload: sum of 10 scalars, and 10 X 10 matrix
sum

e Speed up from 10 to 100 processors?
Single processor: Time = (10 + 100) % t_,

10 processors

100 processors

Assumes load can be balanced across processors



Scaling Example
What if matrix size is 100 x 1007

Single processor: Time = (10 + 10000) x t_,

10 processors

100 processors

Assuming load balanced



Goals for Today

How to improve System Performance?
* Instruction Level Parallelism (ILP)
* Multicore

— Increase clock frequency vs multicore

e Beware of Amdahls Law

Next time:

* Concurrency, programming, and synchronization



Problem Statement
Q: How to improve system performance?
- Increase CPU clock rate?
- But I/O speeds are limited
Disk, Memory, Networks, etc.

Recall: Amdahl’s Law

Solution: Parallelism
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Instruction-Level Parallelism (ILP)
Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?

A: Deeper pipeline
— E.g. 250MHz 1-stage; 500Mhz 2-stage; 1GHz 4-stage; 4GHz
16-stage

Pipeline depth limited by...
— max clock speed (less work per stage = shorter clock cycle)

— min unit of work
— dependencies, hazards / forwarding logic
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Instruction-Level Parallelism (ILP)
Pipelining: execute multiple instructions in parallel
Q: How to get more instruction level parallelism?
A: Multiple issue pipeline

— Start multiple instructions per clock cycle in duplicate stages
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Static Multiple Issue
Static Multiple Issue
a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together
* Packages them into “issue slots”

Q: How does HW detect and resolve hazards?
A: It doesn’t.

- Simple HW, assumes compiler avoids hazards

Example: Static Dual-Issue 32-bit MIPS

* |nstructions come in pairs (64-bit aligned)
— One ALU/branch instruction (or nop)
— One load/store instruction (or nop)

13



MIPS with Static Dual Issue

Two-issue packets

* One ALU/branch instruction
* One load/store instruction

* 64-bit aligned

— ALU/branch, then load/store
— Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n+4 Load/store IF ID =4 MEM WB

n+8 ALU/branch IF ID EX MEM WB

n+12 Load/store IF ID EX MEM wWB

n+16 ALU/branch IF ID EX \ISY WB
n+ 20 Load/store 1= ID EX MEM wWB




Scheduling Example

Schedule this for dual-issue MIPS

Loop: 1w  $t0, 0($s1) # $tO=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: | nop Tw  $t0, 0($sD) 1

addi , $s1,-4 nop 2
addu , $t0, $s2 nop 3
bne , $zero, Loop | sw , 4($s1) 4
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Loop:

Loop:

Scheduling Example

Compiler scheduling for dual-issue MIPS...

lw  $to, 0($s1)
lw  $t1, 4($s1)
addu $to, $to, $s2
addu $t1, $t1, $s2
sw $to, 0($s1)
sw  $tl, 4(%$s1)
addi $s1, $s1, +8
bne $s1, $s3, TOP

ALU/branch slot
nop

nop

addu $to, $to, $s2
addu $t1, $t1, $s2
addi $s1, $s1, +8
bne $s1, $s3, TOP

# $t0 = A[i]

# $t1 = A[i+1]

# add $s2

# add $s2

# store A[1]

# store A[i+1]

# increment pointer

# continue if $sl!=end
Load/store slot cycle
lw  $to, 0(%$s1) 1
Iw  $t1, 4($s1) p)
nop 3
sw $to, 0(%$s1) 4
sw $t1, 4(%$s1) 5
nop 6
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Loop:

Loop:

Scheduling Example

Compiler scheduling for dual-issue MIPS...

lw  $to, 0($s1)
lw  $t1, 4($s1)
addu $to, $to, $s2
addu $t1, $t1, $s2
sw $to, 0($s1)
sw  $tl, 4(%$s1)
addi $s1, $s1, +8
bne $s1, $s3, TOP

ALU/branch slot

nop

addi $s1, $s1, +8
addu $to, $to, $s2
addu $t1, $t1, $s2
bne $s1, $s3, Loop

# $t0 = A[i]

# $t1 = A[i+1]
# add $s2

# add $s2

# store A[1]

# store A[i+1]

# increment pointer

# continue if $sl!=end

Load/store slot cycle
lw  $to, 0(%$s1) 1
Iw  $t1, 4($s1) p)
nop 3
sw $to, -8($sl) 4
sw $t1, -4($s1) 5
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Limits of Static Scheduling

Compiler scheduling for dual-issue MIPS...
lw  $to, 0($s1) # load A

addi $to, $to, +1 # increment A

sw $to, 0($s1) # store A

lw  $to, 0($s2) # load B

addi $to, $to, +1 # increment B

sw $to, 0($s2) # store B
ALU/branch slot Load/store slot cycle
nop lw  $to, 0(%$s1) 1
nop nop 2
addi $to, $to, +1 nop 3
nop sw $to, 0(%$s1) 4
nop lw  $to, 0(%$s2) 5
nop nop 6
addi $to, $to, +1 nop Vs
nop sw $to, 0(%$s2) 8



Dynamic Multiple Issue
Dynamic Multiple Issue

a.k.a. SuperScalar Processor (c.f. Intel)

 CPU examines instruction stream and chooses multiple
instructions to issue each cycle

* Compiler can help by reordering instructions....
... but CPU is responsible for resolving hazards

Even better: Speculation/Out-of-order Execution
e Execute instructions as early as possible
* Aggressive register renaming
e Guess results of branches, loads, etc.
Roll back if guesses were wrong
* Don’t commit results until all previous insts. are retired
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Does Multiple Issue Work?
Q: Does multiple issue / ILP work?
A: Kind of... but not as much as we’d like
Limiting factors?
* Programs dependencies

* Hard to detect dependencies = be conservative
— e.g. Pointer Aliasing: A[0] += 1, B[0] *= 2;

Hard to expose parallelism
— Can only issue a few instructions ahead of PC

Structural limits
— Memory delays and limited bandwidth

Hard to keep pipelines full
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Power Efficiency
Q: Does multiple issue / ILP cost much?

A: Yes.
- Dynamic issue and speculation requires power

CPU Year Clock Pipeline Issue Out-of-order/ Cores Power
Rate Stages width  Speculation

1486 1989  25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
UltraSparc Il 2003 1950MHz 14 4 No 1 90W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W
Core 2006 2930MHz 14 4 Yes 2 75W
UltraSparc T1 2005 1200MHz 6 1 No 8 70W

- Multiple simpler cores may be better?

pA
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Why Multicore?

Moore’s law
* A law about transistors
* Smaller means more transistors per die
* And smaller means faster too

But: Power consumption growing too...
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Power Wall
Power = capacitance * voltage? * frequency
In practice: Power ~ voltage3

Reducing voltage helps (a lot)
... S0 does reducing clock speed
Better cooling helps

The power wall
* We can’t reduce voltage further
 We can’t remove more heat
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Why Multicore?

Performance 1.2x Single-Core
Power _1.7)( Overclocked +20%
Performance 1.0x

Single-Core

Performance - 1.6X pual-Core
Power -- 1.02x Underclocked -20%
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Inside the Processor

AMD Barcelona Quad-Core: 4 processor cores
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Hyperthreading
vs. AT

Multi-Core vs. Multi-Issue

Programs:
Num. Pipelines:
Pipeline Width:

Hyperthreads (Intel)
* |llusion of multiple cores on a single core
* Easy to keep HT pipelines full + share functional units
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Fxamnle- All of the gbove
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Parallel Programming
Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
e Partitioning work
e Coordination & synchronization
e Communications overhead
* Balancing load over cores

* How do you write parallel programs?
— ... without knowing exact underlying architecture?
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Work Partitioning

Partition work so all cores have something to do
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Load Balancing

Load Balancing
Need to partition so all cores are actually working
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If tasks have a serial part and a parallel part...

Amdahl’s Law

Example:

ste
ste
ste

0 1: divide input data into n pieces
0 2: do work on each piece

0 3: combine all results

Recall: Amdahl’s Law

As number of cores increases ...

* time to execute parallel part? goes to zero
* time to execute serial part? Remains the same

e Serial part eventually dominates
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Amdahl’s Law




Parallel Programming
Q: So lets just all use multicore from now on!
A: Software must be written as parallel program

Multicore difficulties
e Partitioning work
e Coordination & synchronization
e Communications overhead
* Balancing load over cores

* How do you write parallel programs?
— ... without knowing exact underlying architecture?
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