
Multicore and Parallel Processing

Hakim Weatherspoon
CS 3410, Spring 2012

Computer Science
Cornell University

P & H Chapter 4.10-11, 7.1-6

2

xkcd/619

3

Pitfall: Amdahl’s Law

affected execution time

amount of improvement

+ execution time unaffected

Execution time after improvement =

unaffected
affected

improved T
factor timprovemen

T
T

4

Pitfall: Amdahl’s Law

Improving an aspect of a computer and expecting a
proportional improvement in overall performance

20
80

20
n

– Can’t be done!

Example: multiply accounts for 80s out of 100s

• How much improvement do we need in the multiply

performance to get 5× overall improvement?

unaffected
affected

improved T
factor timprovemen

T
T

5

Scaling Example
Workload: sum of 10 scalars, and 10 × 10 matrix

sum
• Speed up from 10 to 100 processors?

Single processor: Time = (10 + 100) × tadd

10 processors
• Time = 100/10 × tadd + 10 × tadd = 20 × tadd
• Speedup = 110/20 = 5.5 (55% of potential)

100 processors
• Time = 100/100 × tadd + 10 × tadd = 11 × tadd
• Speedup = 110/11 = 10 (10% of potential)

Assumes load can be balanced across processors

6

Scaling Example
What if matrix size is 100 × 100?

Single processor: Time = (10 + 10000) × tadd

10 processors
• Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

• Speedup = 10010/1010 = 9.9 (99% of potential)

100 processors
• Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

• Speedup = 10010/110 = 91 (91% of potential)

Assuming load balanced

7

Goals for Today
How to improve System Performance?

• Instruction Level Parallelism (ILP)

• Multicore

– Increase clock frequency vs multicore

• Beware of Amdahls Law

Next time:

• Concurrency, programming, and synchronization

8

Problem Statement
Q: How to improve system performance?

 Increase CPU clock rate?

 But I/O speeds are limited

 Disk, Memory, Networks, etc.

Recall: Amdahl’s Law

Solution: Parallelism

9

Instruction-Level Parallelism (ILP)
Pipelining: execute multiple instructions in parallel

Q: How to get more instruction level parallelism?

A: Deeper pipeline
– E.g. 250MHz 1-stage; 500Mhz 2-stage; 1GHz 4-stage; 4GHz

16-stage

Pipeline depth limited by…
– max clock speed (less work per stage shorter clock cycle)

– min unit of work

– dependencies, hazards / forwarding logic

10

Instruction-Level Parallelism (ILP)
Pipelining: execute multiple instructions in parallel

Q: How to get more instruction level parallelism?

A: Multiple issue pipeline
– Start multiple instructions per clock cycle in duplicate stages

11

Static Multiple Issue
Static Multiple Issue

a.k.a. Very Long Instruction Word (VLIW)

Compiler groups instructions to be issued together
• Packages them into “issue slots”

Q: How does HW detect and resolve hazards?

A: It doesn’t.

 Simple HW, assumes compiler avoids hazards

Example: Static Dual-Issue 32-bit MIPS
• Instructions come in pairs (64-bit aligned)

– One ALU/branch instruction (or nop)

– One load/store instruction (or nop)

12

MIPS with Static Dual Issue

Two-issue packets

• One ALU/branch instruction

• One load/store instruction

• 64-bit aligned
– ALU/branch, then load/store

– Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

13

Loop: lw $t0, 0($s1) # $t0=array element
 addu $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 0($s1) # store result
 addi $s1, $s1,–4 # decrement pointer
 bne $s1, $zero, Loop # branch $s1!=0

Scheduling Example

Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
 addu $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 0($s1) # store result
 addi $s1, $s1,–4 # decrement pointer
 bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

– IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

14

Scheduling Example
Compiler scheduling for dual-issue MIPS…
Loop: lw $t0, 0($s1) # $t0 = A[i]
 lw $t1, 4($s1) # $t1 = A[i+1]
 addu $t0, $t0, $s2 # add $s2
 addu $t1, $t1, $s2 # add $s2
 sw $t0, 0($s1) # store A[i]
 sw $t1, 4($s1) # store A[i+1]
 addi $s1, $s1, +8 # increment pointer
 bne $s1, $s3, TOP # continue if $s1!=end

 ALU/branch slot Load/store slot cycle
Loop: nop lw $t0, 0($s1) 1
 nop lw $t1, 4($s1) 2
 addu $t0, $t0, $s2 nop 3
 addu $t1, $t1, $s2 sw $t0, 0($s1) 4
 addi $s1, $s1, +8 sw $t1, 4($s1) 5
 bne $s1, $s3, TOP nop 6

15

Scheduling Example
Compiler scheduling for dual-issue MIPS…
Loop: lw $t0, 0($s1) # $t0 = A[i]
 lw $t1, 4($s1) # $t1 = A[i+1]
 addu $t0, $t0, $s2 # add $s2
 addu $t1, $t1, $s2 # add $s2
 sw $t0, 0($s1) # store A[i]
 sw $t1, 4($s1) # store A[i+1]
 addi $s1, $s1, +8 # increment pointer
 bne $s1, $s3, TOP # continue if $s1!=end

 ALU/branch slot Load/store slot cycle
Loop: nop lw $t0, 0($s1) 1
 addi $s1, $s1, +8 lw $t1, 4($s1) 2
 addu $t0, $t0, $s2 nop 3
 addu $t1, $t1, $s2 sw $t0, -8($s1) 4
 bne $s1, $s3, Loop sw $t1, -4($s1) 5

16

Limits of Static Scheduling
Compiler scheduling for dual-issue MIPS…

 lw $t0, 0($s1) # load A
 addi $t0, $t0, +1 # increment A
 sw $t0, 0($s1) # store A
 lw $t0, 0($s2) # load B
 addi $t0, $t0, +1 # increment B
 sw $t0, 0($s2) # store B

 ALU/branch slot Load/store slot cycle
 nop lw $t0, 0($s1) 1
 nop nop 2
 addi $t0, $t0, +1 nop 3
 nop sw $t0, 0($s1) 4
 nop lw $t0, 0($s2) 5
 nop nop 6
 addi $t0, $t0, +1 nop 7
 nop sw $t0, 0($s2) 8

17

Limits of Static Scheduling
Compiler scheduling for dual-issue MIPS…

 lw $t0, 0($s1) # load A
 addi $t0, $t0, +1 # increment A
 sw $t0, 0($s1) # store A
 lw $t1, 0($s2) # load B
 addi $t1, $t1, +1 # increment B
 sw $t0, 0($s2) # store B

 ALU/branch slot Load/store slot cycle
 nop lw $t0, 0($s1) 1
 nop lw $t1, 0($s2) 2
 addi $t0, $t0, +1 nop 3
 addi $t1, $t1, +1 sw $t0, 0($s1) 4
 nop sw $t1, 0($s2) 5

Problem: What if $s1 and $s2 are equal (aliasing)? Won’t work

18

Dynamic Multiple Issue
Dynamic Multiple Issue

a.k.a. SuperScalar Processor (c.f. Intel)
• CPU examines instruction stream and chooses multiple

instructions to issue each cycle

• Compiler can help by reordering instructions….

• … but CPU is responsible for resolving hazards

Even better: Speculation/Out-of-order Execution
• Execute instructions as early as possible

• Aggressive register renaming

• Guess results of branches, loads, etc.

• Roll back if guesses were wrong

• Don’t commit results until all previous insts. are retired

19

Dynamic Multiple Issue

20

Does Multiple Issue Work?
Q: Does multiple issue / ILP work?

A: Kind of… but not as much as we’d like

Limiting factors?

• Programs dependencies

• Hard to detect dependencies be conservative

– e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2;

• Hard to expose parallelism

– Can only issue a few instructions ahead of PC

• Structural limits

– Memory delays and limited bandwidth

• Hard to keep pipelines full

21

Power Efficiency
Q: Does multiple issue / ILP cost much?

A: Yes.

 Dynamic issue and speculation requires power
CPU Year Clock

Rate

Pipeline

Stages

Issue

width

Out-of-order/

Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

 Multiple simpler cores may be better?

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

22

Moore’s Law

486

286

8088

8080
8008 4004

386

Pentium

Atom P4

Itanium 2
K8

K10

Dual-core Itanium 2

23

Why Multicore?
Moore’s law

• A law about transistors

• Smaller means more transistors per die

• And smaller means faster too

But: Power consumption growing too…

24

Power Limits

Hot Plate

Rocket Nozzle

Nuclear Reactor

Surface of Sun

Xeon

25

Power Wall
Power = capacitance * voltage2 * frequency

In practice: Power ~ voltage3

Reducing voltage helps (a lot)

... so does reducing clock speed

Better cooling helps

The power wall

• We can’t reduce voltage further

• We can’t remove more heat

26

Why Multicore?

Power
1.0x

1.0x

Performance
Single-Core

Power
1.2x

1.7x

Performance Single-Core
Overclocked +20%

Power
0.8x

0.51x

Performance Single-Core
Underclocked -20%

1.6x

1.02x

Dual-Core
Underclocked -20%

27

Inside the Processor
AMD Barcelona Quad-Core: 4 processor cores

28

Inside the Processor
Intel Nehalem Hex-Core

29

Hyperthreading
Multi-Core vs. Multi-Issue

Programs:
Num. Pipelines:
Pipeline Width:

.

vs. HT

N 1 N

N 1 1

1 N N

30

Hyperthreading
Multi-Core vs. Multi-Issue

Programs:
Num. Pipelines:
Pipeline Width:

Hyperthreads
• HT = MultiIssue + extra PCs and registers – dependency logic
• HT = MultiCore – redundant functional units + hazard avoidance

Hyperthreads (Intel)
• Illusion of multiple cores on a single core
• Easy to keep HT pipelines full + share functional units

vs. HT

N 1 N

N 1 1

1 N N

31

Example: All of the above

32

Parallel Programming
Q: So lets just all use multicore from now on!

A: Software must be written as parallel program

Multicore difficulties

• Partitioning work

• Coordination & synchronization

• Communications overhead

• Balancing load over cores

• How do you write parallel programs?

– ... without knowing exact underlying architecture?

33

Work Partitioning
Partition work so all cores have something to do

34

Load Balancing
Load Balancing

Need to partition so all cores are actually working

35

Amdahl’s Law
If tasks have a serial part and a parallel part…

Example:

 step 1: divide input data into n pieces

 step 2: do work on each piece

 step 3: combine all results

Recall: Amdahl’s Law

As number of cores increases …

• time to execute parallel part?

• time to execute serial part?

• Serial part eventually dominates

goes to zero

Remains the same

36

Amdahl’s Law

37

Parallel Programming
Q: So lets just all use multicore from now on!

A: Software must be written as parallel program

Multicore difficulties

• Partitioning work

• Coordination & synchronization

• Communications overhead

• Balancing load over cores

• How do you write parallel programs?

– ... without knowing exact underlying architecture?

38

Administrivia

FlameWar Games Night Next Friday, April 27th

• 5pm in Upson B17

• Please come, eat, drink and have fun

No Lab4 or Lab Section next week!

39

Administrivia

PA3: FlameWar is due next Monday, April 23rd

• The goal is to have fun with it

• Recitations today will talk about it

HW6 Due next Tuesday, April 24th

Prelim3 next Thursday, April 26th

