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Pitfall: Amdahl’s Law 
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Pitfall: Amdahl’s Law 

Improving an aspect of a computer and expecting a 
proportional improvement in overall performance 
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– Can’t be done! 

Example: multiply accounts for 80s out of 100s 

• How much improvement do we need in the multiply 

performance to get 5× overall improvement? 
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Scaling Example 
Workload: sum of 10 scalars, and 10 × 10 matrix 

sum 
• Speed up from 10 to 100 processors? 

 
Single processor: Time = (10 + 100) × tadd 
 
10 processors 
• Time = 100/10 × tadd + 10 × tadd = 20 × tadd 
• Speedup = 110/20 = 5.5 (55% of potential) 

 
100 processors 
• Time = 100/100 × tadd + 10 × tadd = 11 × tadd 
• Speedup = 110/11 = 10 (10% of potential) 

 
Assumes load can be balanced across processors 
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Scaling Example 
What if matrix size is 100 × 100? 

 

Single processor: Time = (10 + 10000) × tadd 

 

10 processors 
• Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd 

• Speedup = 10010/1010 = 9.9 (99% of potential) 

 

100 processors 
• Time = 10 × tadd + 10000/100 × tadd = 110 × tadd 

• Speedup = 10010/110 = 91 (91% of potential) 

 

Assuming load balanced 
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Goals for Today 
How to improve System Performance? 

• Instruction Level Parallelism (ILP) 

• Multicore  

– Increase clock frequency vs multicore 

• Beware of Amdahls Law 

 

Next time:  

• Concurrency, programming, and synchronization 
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Problem Statement 
Q: How to improve system performance? 

 Increase CPU clock rate? 

  But I/O speeds are limited 

  Disk, Memory, Networks, etc. 

 

Recall: Amdahl’s Law 

 

Solution: Parallelism 
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Instruction-Level Parallelism (ILP) 
Pipelining: execute multiple instructions in parallel 

Q: How to get more instruction level parallelism? 

A: Deeper pipeline 
– E.g. 250MHz 1-stage; 500Mhz 2-stage; 1GHz 4-stage; 4GHz 

16-stage 

 

 

 

Pipeline depth limited by… 
– max clock speed (less work per stage  shorter clock cycle) 

– min unit of work 

– dependencies, hazards / forwarding logic 
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Instruction-Level Parallelism (ILP) 
Pipelining: execute multiple instructions in parallel 

Q: How to get more instruction level parallelism? 

A: Multiple issue pipeline 
– Start multiple instructions per clock cycle in duplicate stages 
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Static Multiple Issue 
Static Multiple Issue 

a.k.a. Very Long Instruction Word (VLIW) 

Compiler groups instructions to be issued together 
• Packages them into “issue slots” 

Q: How does HW detect and resolve hazards? 

A: It doesn’t. 

  Simple HW, assumes compiler avoids hazards 
 

Example: Static Dual-Issue 32-bit MIPS 
• Instructions come in pairs (64-bit aligned) 

– One ALU/branch instruction (or nop) 

– One load/store instruction (or nop) 
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MIPS with Static Dual Issue 

Two-issue packets 

• One ALU/branch instruction 

• One load/store instruction 

• 64-bit aligned 
– ALU/branch, then load/store 

– Pad an unused instruction with nop 

Address Instruction type Pipeline Stages 

n ALU/branch IF ID EX MEM WB 

n + 4 Load/store IF ID EX MEM WB 

n + 8 ALU/branch IF ID EX MEM WB 

n + 12 Load/store IF ID EX MEM WB 

n + 16 ALU/branch IF ID EX MEM WB 

n + 20 Load/store IF ID EX MEM WB 
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Loop: lw   $t0, 0($s1)      # $t0=array element 
      addu $t0, $t0, $s2    # add scalar in $s2 
      sw   $t0, 0($s1)      # store result 
      addi $s1, $s1,–4      # decrement pointer 
      bne  $s1, $zero, Loop # branch $s1!=0 

Scheduling Example 

Schedule this for dual-issue MIPS 

Loop: lw   $t0, 0($s1)      # $t0=array element 
      addu $t0, $t0, $s2    # add scalar in $s2 
      sw   $t0, 0($s1)      # store result 
      addi $s1, $s1,–4      # decrement pointer 
      bne  $s1, $zero, Loop # branch $s1!=0 

ALU/branch Load/store cycle 

Loop: nop lw   $t0, 0($s1) 1 

addi $s1, $s1,–4 nop 2 

addu $t0, $t0, $s2 nop 3 

bne  $s1, $zero, Loop sw   $t0, 4($s1) 4 

– IPC = 5/4 = 1.25 (c.f. peak IPC = 2) 
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Scheduling Example 
Compiler scheduling for dual-issue MIPS… 
Loop:  lw   $t0, 0($s1)      # $t0 = A[i] 
   lw   $t1, 4($s1)  # $t1 = A[i+1] 
   addu $t0, $t0, $s2    # add $s2 
   addu $t1, $t1, $s2    # add $s2 
   sw   $t0, 0($s1)      # store A[i] 
   sw   $t1, 4($s1)      # store A[i+1] 
      addi $s1, $s1, +8    # increment pointer 
      bne  $s1, $s3, TOP  # continue if $s1!=end 
 
 ALU/branch slot Load/store slot cycle 
Loop: nop lw   $t0,  0($s1) 1 
 nop lw   $t1,  4($s1) 2 
 addu $t0, $t0, $s2 nop 3 
 addu $t1, $t1, $s2 sw   $t0,  0($s1) 4 
 addi $s1, $s1, +8  sw   $t1,  4($s1) 5 
 bne  $s1, $s3, TOP nop 6 
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Scheduling Example 
Compiler scheduling for dual-issue MIPS… 
Loop:  lw   $t0, 0($s1)      # $t0 = A[i] 
   lw   $t1, 4($s1)  # $t1 = A[i+1] 
   addu $t0, $t0, $s2    # add $s2 
   addu $t1, $t1, $s2    # add $s2 
   sw   $t0, 0($s1)      # store A[i] 
   sw   $t1, 4($s1)      # store A[i+1] 
      addi $s1, $s1, +8    # increment pointer 
      bne  $s1, $s3, TOP  # continue if $s1!=end 
 
 ALU/branch slot Load/store slot cycle 
Loop: nop lw   $t0,  0($s1) 1 
 addi $s1, $s1, +8  lw   $t1,  4($s1) 2 
 addu $t0, $t0, $s2 nop 3 
 addu $t1, $t1, $s2 sw   $t0,  -8($s1) 4 
 bne  $s1, $s3, Loop  sw   $t1,  -4($s1) 5 
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Limits of Static Scheduling  
Compiler scheduling for dual-issue MIPS… 

   lw   $t0, 0($s1)      # load A 
  addi $t0, $t0, +1  # increment A 
   sw   $t0, 0($s1)  # store A 
  lw   $t0, 0($s2)      # load B 
  addi $t0, $t0, +1  # increment B 
   sw   $t0, 0($s2)  # store B 
 
 ALU/branch slot Load/store slot cycle 
 nop lw   $t0,  0($s1) 1 
 nop nop 2 
 addi $t0, $t0, +1 nop 3 
 nop sw   $t0,  0($s1) 4 
 nop lw   $t0,  0($s2) 5 
 nop nop 6 
 addi $t0, $t0, +1 nop 7 
 nop sw   $t0,  0($s2) 8 
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Limits of Static Scheduling  
Compiler scheduling for dual-issue MIPS… 

   lw   $t0, 0($s1)      # load A 
  addi $t0, $t0, +1  # increment A 
   sw   $t0, 0($s1)  # store A 
  lw   $t1, 0($s2)      # load B 
  addi $t1, $t1, +1  # increment B 
   sw   $t0, 0($s2)  # store B 
 
 ALU/branch slot Load/store slot cycle 
 nop lw   $t0,  0($s1) 1 
 nop lw   $t1,  0($s2)  2 
 addi $t0, $t0, +1 nop 3 
 addi $t1, $t1, +1  sw   $t0,  0($s1) 4 
 nop sw   $t1,  0($s2)  5 

Problem: What if $s1 and $s2 are equal (aliasing)? Won’t work 
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Dynamic Multiple Issue 
Dynamic Multiple Issue 

a.k.a. SuperScalar Processor (c.f. Intel) 
• CPU examines instruction stream and chooses multiple 

instructions to issue each cycle 

• Compiler can help by reordering instructions…. 

• … but CPU is responsible for resolving hazards 

Even better: Speculation/Out-of-order Execution 
• Execute instructions as early as possible 

• Aggressive register renaming 

• Guess results of branches, loads, etc. 

• Roll back if guesses were wrong 

• Don’t commit results until all previous insts. are retired 
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Dynamic Multiple Issue 
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Does Multiple Issue Work? 
Q: Does multiple issue / ILP work? 

A: Kind of… but not as much as we’d like 

Limiting factors? 

• Programs dependencies 

• Hard to detect dependencies  be conservative 

– e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2; 

• Hard to expose parallelism 

– Can only issue a few instructions ahead of PC 

• Structural limits 

– Memory delays and limited bandwidth 

• Hard to keep pipelines full 
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Power Efficiency 
Q: Does multiple issue / ILP cost much? 

A: Yes. 

 Dynamic issue and speculation requires power 
CPU Year Clock 

Rate 

Pipeline 

Stages 

Issue 

width 

Out-of-order/ 

Speculation 

Cores Power 

i486 1989 25MHz 5 1 No 1 5W 

Pentium 1993 66MHz 5 2 No 1 10W 

Pentium Pro 1997 200MHz 10 3 Yes 1 29W 

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W 

UltraSparc III 2003 1950MHz 14 4 No 1 90W 

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W 

 Multiple simpler cores may be better? 

Core 2006 2930MHz 14 4 Yes 2 75W 

UltraSparc T1 2005 1200MHz 6 1 No 8 70W 
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Moore’s Law 

486 

286 

8088 

8080 
8008 4004 

386 

Pentium 

Atom P4 

Itanium 2 
K8 

K10 

Dual-core Itanium 2 
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Why Multicore? 
Moore’s law 

• A law about transistors 

• Smaller means more transistors per die 

• And smaller means faster too 

 

But: Power consumption growing too… 



24 

Power Limits 

Hot Plate 

Rocket Nozzle 

Nuclear Reactor 

Surface of Sun 

Xeon 
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Power Wall 
Power = capacitance * voltage2 * frequency  

In practice: Power ~ voltage3 

 

Reducing voltage helps (a lot) 

... so does reducing clock speed 

Better cooling helps 

 

The power wall 

• We can’t reduce voltage further 

• We can’t remove more heat 
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Why Multicore?  

Power 
1.0x 

1.0x 

Performance 
Single-Core 

Power 
1.2x 

1.7x 

Performance Single-Core 
Overclocked +20% 

Power 
0.8x 

0.51x 

Performance Single-Core 
Underclocked -20% 

1.6x 

1.02x 

Dual-Core 
Underclocked -20% 
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Inside the Processor 
AMD Barcelona Quad-Core: 4 processor cores 
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Inside the Processor 
Intel Nehalem Hex-Core 
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Hyperthreading 
Multi-Core vs. Multi-Issue 

 
Programs: 
Num. Pipelines: 
Pipeline Width: 

 
 
 
 
 
 
 
 
. 
 
 
 
 
 

 

vs. HT 

N 1 N 

N 1 1 

1 N N 
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Hyperthreading 
Multi-Core vs. Multi-Issue 

 
Programs: 
Num. Pipelines: 
Pipeline Width: 

 
 
 
Hyperthreads 
• HT = MultiIssue + extra PCs and registers – dependency logic 
• HT = MultiCore – redundant functional units + hazard avoidance 

 
Hyperthreads (Intel) 
• Illusion of multiple cores on a single core 
• Easy to keep HT pipelines full + share functional units 

vs. HT 

N 1 N 

N 1 1 

1 N N 
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Example: All of the above 
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Parallel Programming 
Q: So lets just all use multicore from now on! 

A: Software must be written as parallel program 

 

Multicore difficulties 

• Partitioning work 

• Coordination & synchronization 

• Communications overhead 

• Balancing load over cores 

• How do you write parallel programs? 

– ... without knowing exact underlying architecture? 
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Work Partitioning 
Partition work so all cores have something to do 
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Load Balancing 
Load Balancing 

Need to partition so all cores are actually working 
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Amdahl’s Law 
If tasks have a serial part and a parallel part… 

Example:  

 step 1: divide input data into n pieces 

 step 2: do work on each piece 

 step 3: combine all results 

Recall: Amdahl’s Law 

As number of cores increases … 

• time to execute parallel part?  

• time to execute serial part? 

• Serial part eventually dominates  

goes to zero 

Remains the same 
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Amdahl’s Law 
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Parallel Programming 
Q: So lets just all use multicore from now on! 

A: Software must be written as parallel program 

 

Multicore difficulties 

• Partitioning work 

• Coordination & synchronization 

• Communications overhead 

• Balancing load over cores 

• How do you write parallel programs? 

– ... without knowing exact underlying architecture? 
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Administrivia 

FlameWar Games Night Next Friday, April 27th  

• 5pm in Upson B17 

• Please come, eat, drink and have fun 

 

No Lab4 or Lab Section next week! 
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Administrivia 

PA3: FlameWar is due next Monday, April 23rd 

• The goal is to have fun with it 

• Recitations today will talk about it 

 

HW6 Due next Tuesday, April 24th 

 

Prelim3 next Thursday, April 26th  


