
Virtual Memory 3

Hakim Weatherspoon
CS 3410, Spring 2012

Computer Science
Cornell University

P & H Chapter 5.4

2

Goals for Today
Virtual Memory

• Address Translation

• Pages, page tables, and memory mgmt unit

• Paging

• Role of Operating System

• Context switches, working set, shared memory

• Performance

• How slow is it

• Making virtual memory fast

• Translation lookaside buffer (TLB)

• Virtual Memory Meets Caching

3

Virtual Memory

4

Big Picture: Multiple Processes
How to Run multiple processes?

Time-multiplex a single CPU core (multi-tasking)

• Web browser, skype, office, … all must co-exist

Many cores per processor (multi-core)
 or many processors (multi-processor)

• Multiple programs run simultaneously

5

Write-
Back Memory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

Big Picture: (Virtual) Memory

alu

memory

din dout

addr

PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B

A

ct

rl

ct
rl

ct
rl

B

D

D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard

Memory: big & slow vs Caches: small & fast

6

LB $1 M[1]
LB $2 M[5]
LB $3 M[1]
LB $3 M[4]
LB $2 M[0]
LB $2 M[12]
LB $2 M[5]
LB $2 M[12]
LB $2 M[5]
LB $2 M[12]
LB $2 M[5]

Big Picture: (Virtual) Memory

Processor Memory

Misses:

Hits:

Cache

tag data

2

100

110

150

140 1

0

0 Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

Memory: big & slow vs Caches: small & fast

7

Processor & Memory
CPU address/data bus...

 … routed through caches

 … to main memory
• Simple, fast, but…

Q: What happens for LW/SW
to an invalid location?
• 0x000000000 (NULL)

• uninitialized pointer

A: Need a memory management unit
(MMU)
• Throw (and/or handle) an exception

CPU

Text

Data

Stack

Heap

Memory
0x000…0

0x7ff…f

0xfff…f

8

Multiple Processes
Q: What happens when another program is

executed concurrently on another processor?

A: The addresses will conflict

• Even though, CPUs may take

 turns using memory bus

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

9

Multiple Processes
Q: Can we relocate second program?

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

10

Solution? Multiple processes/processors
Q: Can we relocate second program?

A: Yes, but…

• What if they don’t fit?

• What if not contiguous?

• Need to recompile/relink?

• …

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

11

All problems in computer science can be solved by
another level of indirection.

– David Wheeler

– or, Butler Lampson

– or, Leslie Lamport

– or, Steve Bellovin

paddr = PageTable[vaddr];

12

Performance

13

Performance Review
Virtual Memory Summary

PageTable for each process:

• 4MB contiguous in physical memory, or multi-level, …

• every load/store translated to physical addresses

• page table miss = page fault
load the swapped-out page and retry instruction,
or kill program if the page really doesn’t exist,
or tell the program it made a mistake

14

Beyond Flat Page Tables
Assume most of PageTable is empty

How to translate addresses?

10 bits

PTBR

10 bits 10 bits vaddr

PDEntry

Page Directory

Page Table

PTEntry
Page

Word

2

Multi-level PageTable

* x86 does exactly this

15

Page Table Review
x86 Example: 2 level page tables, assume…

32 bit vaddr, 32 bit paddr
4k PDir, 4k PTables, 4k Pages

Q:How many bits for a physical page number?
A: 20

Q: What is stored in each PageTableEntry?

A: ppn, valid/dirty/r/w/x/…

Q: What is stored in each PageDirEntry?

A: ppn, valid/?/…

Q: How many entries in a PageDirectory?

A: 1024 four-byte PDEs

Q: How many entires in each PageTable?

A: 1024 four-byte PTEs

PDE

PTBR
PDE
PDE

PDE

PTE
PTE
PTE

PTE

16

Page Table Review Example
x86 Example: 2 level page tables, assume…

32 bit vaddr, 32 bit paddr
4k PDir, 4k PTables, 4k Pages
PTBR = 0x10005000 (physical)

Write to virtual address 0x7192a44c…
Q: Byte offset in page? PT Index? PD Index?

(1) PageDir is at 0x10005000, so…
Fetch PDE from physical address 0x1005000+(4*PDI)

• suppose we get {0x12345, v=1, …}

(2) PageTable is at 0x12345000, so…
Fetch PTE from physical address 0x12345000+(4*PTI)

• suppose we get {0x14817, v=1, d=0, r=1, w=1, x=0, …}

(3) Page is at 0x14817000, so…
Write data to physical address?
Also: update PTE with d=1

PDE

PTBR
PDE
PDE

PDE

PTE
PTE
PTE

PTE

0x1481744c

17

Performance Review
Virtual Memory Summary

PageTable for each process:

• 4MB contiguous in physical memory, or multi-level, …

• every load/store translated to physical addresses

• page table miss: load a swapped-out page and retry
instruction, or kill program

Performance?

• terrible: memory is already slow
translation makes it slower

Solution?

• A cache, of course

18

Making Virtual Memory Fast

The Translation Lookaside Buffer (TLB)

19

Translation Lookaside Buffer (TLB)
Hardware Translation Lookaside Buffer (TLB)

A small, very fast cache of recent address mappings

• TLB hit: avoids PageTable lookup

• TLB miss: do PageTable lookup, cache result for later

20

TLB Diagram

V R W X D
0 invalid
1 0
0 invalid
0 invalid
1 0
0 0
1 1
0 invalid

V R W X D tag ppn

V
0 invalid
0 invalid
0 invalid
1
0 invalid
1
1
0 invalid

21

A TLB in the Memory Hierarchy

(1) Check TLB for vaddr (~ 1 cycle)

(2) TLB Miss: traverse PageTables for vaddr

(3a) PageTable has valid entry for in-memory page

• Load PageTable entry into TLB; try again (tens of cycles)

(3b) PageTable has entry for swapped-out (on-disk) page

• Page Fault: load from disk, fix PageTable, try again (millions of cycles)

(3c) PageTable has invalid entry

• Page Fault: kill process

CPU
TLB

Lookup
Cache

Mem Disk

PageTable
Lookup

 (2) TLB Hit

• compute paddr, send to cache

22

TLB Coherency
TLB Coherency: What can go wrong?

A: PageTable or PageDir contents change

• swapping/paging activity, new shared pages, …

A: Page Table Base Register changes

• context switch between processes

23

Translation Lookaside Buffers (TLBs)
When PTE changes, PDE changes, PTBR changes….

Full Transparency: TLB coherency in hardware

• Flush TLB whenever PTBR register changes
[easy – why?]

• Invalidate entries whenever PTE or PDE changes
[hard – why?]

TLB coherency in software

If TLB has a no-write policy…

• OS invalidates entry after OS modifies page tables

• OS flushes TLB whenever OS does context switch

24

TLB Parameters
TLB parameters (typical)

• very small (64 – 256 entries), so very fast

• fully associative, or at least set associative

• tiny block size: why?

Intel Nehalem TLB (example)

• 128-entry L1 Instruction TLB, 4-way LRU

• 64-entry L1 Data TLB, 4-way LRU

• 512-entry L2 Unified TLB, 4-way LRU

25

Virtual Memory meets Caching

Virtually vs. physically addressed caches

Virtually vs. physically tagged caches

26

Virtually Addressed Caching
Q: Can we remove the TLB from the critical path?

A: Virtually-Addressed Caches

CPU

TLB
Lookup

Virtually
Addressed

Cache

Mem Disk

PageTable
Lookup

27

Virtual vs. Physical Caches

CPU

Cache

SRAM

Memory

DRAM

addr

data

MMU

Cache

SRAM
MMU

CPU

Memory

DRAM

addr

data

Cache works on physical addresses

Cache works on virtual addresses

Q: What happens on context switch?
Q: What about virtual memory aliasing?
Q: So what’s wrong with physically addressed caches?

28

Indexing vs. Tagging
Physically-Addressed Cache
• slow: requires TLB (and maybe PageTable) lookup first

Virtually-Indexed, Virtually Tagged Cache
• fast: start TLB lookup before cache lookup finishes

• PageTable changes (paging, context switch, etc.)
 need to purge stale cache lines (how?)

• Synonyms (two virtual mappings for one physical page)
 could end up in cache twice (very bad!)

Virtually-Indexed, Physically Tagged Cache
• ~fast: TLB lookup in parallel with cache lookup

• PageTable changes no problem: phys. tag mismatch

• Synonyms search and evict lines with same phys. tag

Virtually-Addressed Cache

29

Indexing vs. Tagging

30

Typical Cache Setup

CPU
L2 Cache

SRAM

Memory

DRAM

addr

data

MMU

Typical L1: On-chip virtually addressed, physically tagged

Typical L2: On-chip physically addressed

Typical L3: On-chip …

L1 Cache

SRAM
TLB SRAM

31

Summary of Caches/TLBs/VM
Caches, Virtual Memory, & TLBs

Where can block be placed?

• Direct, n-way, fully associative

What block is replaced on miss?

• LRU, Random, LFU, …

How are writes handled?

• No-write (w/ or w/o automatic invalidation)

• Write-back (fast, block at time)

• Write-through (simple, reason about consistency)

32

Summary of Caches/TLBs/VM
Caches, Virtual Memory, & TLBs

Where can block be placed?

• Caches: direct/n-way/fully associative (fa)

• VM: fa, but with a table of contents to eliminate searches

• TLB: fa

What block is replaced on miss?

• varied

How are writes handled?

• Caches: usually write-back, or maybe write-through, or
maybe no-write w/ invalidation

• VM: write-back

• TLB: usually no-write

33

Summary of Cache Design Parameters

L1 Paged Memory TLB

Size

(blocks)

1/4k to 4k 16k to 1M 64 to 4k

Size

(kB)

16 to 64 1M to 4G 2 to 16

Block

size (B)

16-64 4k to 64k 4-32

Miss

rates

2%-5% 10-4 to 10-5% 0.01% to 2%

Miss

penalty

10-25 10M-100M 100-1000

