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Goals for Today 
Virtual Memory 

• Address Translation 

• Pages, page tables, and memory mgmt unit 

• Paging 

• Role of Operating System 

• Context switches, working set, shared memory 

• Performance  

• How slow is it 

• Making virtual memory fast 

• Translation lookaside buffer (TLB) 

• Virtual Memory Meets Caching 
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Virtual Memory 
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Big Picture: Multiple Processes 
How to Run multiple processes? 

Time-multiplex a single CPU core (multi-tasking) 

• Web browser, skype, office, … all must co-exist 

 

Many cores per processor (multi-core) 
 or many processors (multi-processor) 

• Multiple programs run simultaneously 
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Processor & Memory 
CPU address/data bus... 

 … routed through caches 

 … to main memory 
• Simple, fast, but… 

 

Q: What happens for LW/SW  
to an invalid location? 
• 0x000000000 (NULL) 

• uninitialized pointer 

 

A: Need a memory management unit 
(MMU) 
• Throw (and/or handle) an exception 
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Multiple Processes  
Q: What happens when another program is 

executed concurrently on another processor? 

 

 

 

 

 

A:  The addresses will conflict 

• Even though, CPUs may take  
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Multiple Processes  
Q: Can we relocate second program? 
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Solution? Multiple processes/processors 
Q: Can we relocate second program? 

A: Yes, but… 

• What if they don’t fit? 

• What if not contiguous? 

• Need to recompile/relink? 

• … 

CPU 

Text 

Data 

Stack 

Heap 

Memory 

CPU 

Text 

Data 

Stack 

Heap 



11 

 

All problems in computer science can be solved by 
another level of indirection. 

  

–  David Wheeler 

– or, Butler Lampson 

–  or, Leslie Lamport 

–  or, Steve Bellovin 

 

paddr = PageTable[vaddr]; 
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Performance 
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Performance Review 
Virtual Memory Summary 

PageTable for each process: 

• 4MB contiguous in physical memory, or multi-level, … 

• every load/store translated to physical addresses 

• page table miss = page fault 
load the swapped-out page and retry instruction, 
or kill program if the page really doesn’t exist, 
or tell the program it made a mistake 
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Beyond Flat Page Tables 
Assume most of PageTable is empty 

How to translate addresses?  

10 bits 
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Multi-level PageTable 

* x86 does exactly this 
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Page Table Review 
x86 Example: 2 level page tables, assume… 

32 bit vaddr, 32 bit paddr 
4k PDir, 4k PTables, 4k Pages 

 
Q:How many bits for a physical page number? 
A: 20 

Q: What is stored in each PageTableEntry? 

A: ppn, valid/dirty/r/w/x/… 

Q: What is stored in each PageDirEntry? 

A: ppn, valid/?/… 

Q: How many entries in a PageDirectory? 

A: 1024 four-byte PDEs 

Q: How many entires in each PageTable? 

A: 1024 four-byte PTEs 
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Page Table Review Example 
x86 Example: 2 level page tables, assume… 

32 bit vaddr, 32 bit paddr 
4k PDir, 4k PTables, 4k Pages 
PTBR = 0x10005000 (physical) 

Write to virtual address 0x7192a44c… 
Q: Byte offset in page?              PT Index?               PD Index? 

(1) PageDir is at 0x10005000, so… 
Fetch PDE from physical address 0x1005000+(4*PDI) 

• suppose we get {0x12345, v=1, …} 

(2) PageTable is at 0x12345000, so… 
Fetch PTE from physical address 0x12345000+(4*PTI) 

• suppose we get {0x14817, v=1, d=0, r=1, w=1, x=0, …} 

(3) Page is at 0x14817000, so… 
Write data to physical address? 
Also: update PTE with d=1 
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Performance Review 
Virtual Memory Summary 

PageTable for each process: 

• 4MB contiguous in physical memory, or multi-level, … 

• every load/store translated to physical addresses 

• page table miss: load a swapped-out page and retry 
instruction, or kill program 

Performance? 

• terrible: memory is already slow 
translation makes it slower 

Solution? 

• A cache, of course 
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Making Virtual Memory Fast 

The Translation Lookaside Buffer (TLB) 
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Translation Lookaside Buffer (TLB) 
Hardware Translation Lookaside Buffer (TLB) 

A small, very fast cache of recent address mappings 

• TLB hit: avoids PageTable lookup 

• TLB miss: do PageTable lookup, cache result for later 
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TLB Diagram 
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A TLB in the Memory Hierarchy 

(1) Check TLB for vaddr (~ 1 cycle) 

 

(2) TLB Miss: traverse PageTables for vaddr 

(3a) PageTable has valid entry for in-memory page 

• Load PageTable entry into TLB; try again (tens of cycles) 

(3b) PageTable has entry for swapped-out (on-disk) page 

• Page Fault: load from disk, fix PageTable, try again (millions of cycles) 

(3c) PageTable has invalid entry 

• Page Fault: kill process 
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  (2) TLB Hit 

• compute paddr, send to cache 
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TLB Coherency 
TLB Coherency: What can go wrong? 

A: PageTable or PageDir contents change 

• swapping/paging activity, new shared pages, … 

A: Page Table Base Register changes 

• context switch between processes 
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Translation Lookaside Buffers (TLBs) 
When PTE changes, PDE changes, PTBR changes…. 

Full Transparency: TLB coherency in hardware 

• Flush TLB whenever PTBR register changes  
[easy – why?] 

• Invalidate entries whenever PTE or PDE changes  
[hard – why?] 

TLB coherency in software 

If TLB has a no-write policy… 

• OS invalidates entry after OS modifies page tables 

• OS flushes TLB whenever OS does context switch 
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TLB Parameters 
TLB parameters (typical) 

• very small (64 – 256 entries), so very fast 

• fully associative, or at least set associative 

• tiny block size: why? 

 

Intel Nehalem TLB (example) 

• 128-entry L1 Instruction TLB, 4-way LRU 

• 64-entry L1 Data TLB, 4-way LRU 

• 512-entry L2 Unified TLB, 4-way LRU 
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Virtual Memory meets Caching 

Virtually vs. physically addressed caches 

Virtually vs. physically tagged caches 
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Virtually Addressed Caching 
Q: Can we remove the TLB from the critical path? 

A: Virtually-Addressed Caches 
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Virtual vs. Physical Caches 
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Cache works on physical addresses 

Cache works on virtual addresses 

Q: What happens on context switch? 
Q: What about virtual memory aliasing? 
Q: So what’s wrong with physically addressed caches? 
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Indexing vs. Tagging 
Physically-Addressed Cache 
• slow: requires TLB (and maybe PageTable) lookup first 

Virtually-Indexed, Virtually Tagged Cache 
• fast: start TLB lookup before cache lookup finishes 

• PageTable changes (paging, context switch, etc.) 
  need to purge stale cache lines (how?) 

• Synonyms (two virtual mappings for one physical page) 
 could end up in cache twice (very bad!) 

Virtually-Indexed, Physically Tagged Cache 
• ~fast: TLB lookup in parallel with cache lookup 

• PageTable changes  no problem: phys. tag mismatch 

• Synonyms  search and evict lines with same phys. tag 

Virtually-Addressed Cache 
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Indexing vs. Tagging 
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Typical Cache Setup 
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Summary of Caches/TLBs/VM 
Caches, Virtual Memory, & TLBs 

Where can block be placed? 

• Direct, n-way, fully associative 

 

 

What block is replaced on miss? 

• LRU, Random, LFU, …  

How are writes handled? 

• No-write (w/ or w/o automatic invalidation) 

• Write-back (fast, block at time) 

• Write-through (simple, reason about consistency) 
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Summary of Caches/TLBs/VM 
Caches, Virtual Memory, & TLBs 

Where can block be placed? 

• Caches: direct/n-way/fully associative (fa) 

• VM: fa, but with a table of contents to eliminate searches 

• TLB: fa 

What block is replaced on miss? 

• varied 

How are writes handled? 

• Caches: usually write-back, or maybe write-through, or 
maybe no-write w/ invalidation 

• VM: write-back  

• TLB: usually no-write 
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Summary of Cache Design Parameters 

L1 Paged Memory TLB 

Size 

(blocks) 

1/4k to 4k 16k to 1M 64 to 4k 

Size 

(kB) 

16 to 64 1M to 4G 2 to 16 

Block 

size (B) 

16-64 4k to 64k 4-32 

Miss 

rates 

2%-5% 10-4 to 10-5% 0.01% to 2% 

Miss 

penalty 

10-25 10M-100M 100-1000 


