
Virtual Memory

Hakim Weatherspoon
CS 3410, Spring 2012

Computer Science
Cornell University

P & H Chapter 5.4 (up to TLBs)

2

Administrivia

Lab3 is due next Monday

HW5 is due next Tuesday

• Download updated version. Use updated version.

3

Goals for Today
Virtual Memory

• Address Translation

• Pages, page tables, and memory mgmt unit

• Paging

• Role of Operating System

• Context switches, working set, shared memory

• Performance

• How slow is it

• Making virtual memory fast

• Translation lookaside buffer (TLB)

• Virtual Memory Meets Caching

4

Virtual Memory

5

Big Picture: Multiple Processes
How to Run multiple processes?

Time-multiplex a single CPU core (multi-tasking)

• Web browser, skype, office, … all must co-exist

Many cores per processor (multi-core)
 or many processors (multi-processor)

• Multiple programs run simultaneously

6

Write-
Back Memory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

Big Picture: (Virtual) Memory

alu

memory

din dout

addr

PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B

A

ct

rl

ct
rl

ct
rl

B

D

D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard

Memory: big & slow vs Caches: small & fast

7

LB $1  M[1]
LB $2  M[5]
LB $3  M[1]
LB $3  M[4]
LB $2  M[0]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]

Big Picture: (Virtual) Memory

Processor Memory

Misses:

Hits:

Cache

tag data

2

100

110

150

140 1

0

0 Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

Memory: big & slow vs Caches: small & fast

8

Processor & Memory
CPU address/data bus...

 … routed through caches

 … to main memory
• Simple, fast, but…

Q: What happens for LW/SW
to an invalid location?
• 0x000000000 (NULL)

• uninitialized pointer

A: Need a memory management unit
(MMU)
• Throw (and/or handle) an exception

CPU

Text

Data

Stack

Heap

Memory
0x000…0

0x7ff…f

0xfff…f

9

Multiple Processes
Q: What happens when another program is

executed concurrently on another processor?

A: The addresses will conflict

• Even though, CPUs may take

 turns using memory bus

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

10

Multiple Processes
Q: Can we relocate second program?

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

0x000…0

0x7ff…f

0xfff…f

11

Solution? Multiple processes/processors
Q: Can we relocate second program?

A: Yes, but…

• What if they don’t fit?

• What if not contiguous?

• Need to recompile/relink?

• …

CPU

Text

Data

Stack

Heap

Memory

CPU

Text

Data

Stack

Heap

12

All problems in computer science can be solved by
another level of indirection.

– David Wheeler

– or, Butler Lampson

– or, Leslie Lamport

– or, Steve Bellovin

13

Virtual Memory
Virtual Memory: A Solution for All Problems

Each process has its own virtual address space

• Programmer can code as if they own all of memory

On-the-fly at runtime, for each memory access

• all access is indirect through a virtual address

• translate fake virtual address to a real physical address

• redirect load/store to the physical address

14

Address Spaces

wikipedia

15

Address Space

Programs load/store to virtual addresses

Actual memory uses physical addresses

Memory Management Unit (MMU)

• Responsible for translating on the fly

• Essentially, just a big array of integers:
 paddr = PageTable[vaddr];

CPU

MMU

A
B
C

X

Y
Z

X
Y
Z

C
B

A

CPU

MMU

16

Virtual Memory Advantages
Advantages

Easy relocation

• Loader puts code anywhere in physical memory

• Creates virtual mappings to give illusion of correct layout

Higher memory utilization

• Provide illusion of contiguous memory

• Use all physical memory, even physical address 0x0

Easy sharing

• Different mappings for different programs / cores

And more to come…

17

Address Translation

Pages, Page Tables, and

the Memory Management Unit (MMU)

18

Address Translation
Attempt #1: How does MMU translate addresses?

 paddr = PageTable[vaddr];

Granularity?

• Per word…

• Per block…

• Variable..…

Typical:

• 4KB – 16KB pages

• 4MB – 256MB jumbo pages

19

Address Translation

Attempt #1: For any access to virtual address:

• Calculate virtual page number and page offset

• Lookup physical page number at PageTable[vpn]

• Calculate physical address as ppn:offset

vaddr Page Offset Virtual page number

Page offset Physical page number

Lookup in PageTable

paddr

20

Simple PageTable

Q: Where to store page tables?

A: In memory, of course…
Special page table base register
(CR3:PTBR on x86)
(Cop0:ContextRegister on MIPS)

CPU MMU Data

Read Mem[0x00201538]

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

21

Summary

vpn pgoff

Physical Page
Number
0x10045

 0xC20A3
0x4123B
0x00000
0x20340

vaddr PTBR

22

Page Size Example
Overhead for VM Attempt #1 (example)

Virtual address space (for each process):

• total memory: 232 bytes = 4GB

• page size: 212 bytes = 4KB

• entries in PageTable?

• size of PageTable?

Physical address space:

• total memory: 229 bytes = 512MB

• overhead for 10 processes?

23

Invalid Pages

Cool Trick #1: Don’t map all pages

Need valid bit for each
page table entry

Q: Why?

V
Physical Page

Number
0
1 0x10045
0
0
1 0xC20A3
1 0x4123B
1 0x00000
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

24

Beyond Flat Page Tables
Assume most of PageTable is empty

How to translate addresses?

10 bits

PTBR

10 bits 10 bits vaddr

PDEntry

Page Directory

Page Table

PTEntry
Page

Word

2

Multi-level PageTable

* x86 does exactly this

25

Page Permissions

Cool Trick #2: Page permissions!

Keep R, W, X permission bits for
each page table entry

Q: Why?

V R W X
Physical Page

Number
0
1 0x10045
0
0
1 0xC20A3
1 0x4123B
1 0x00000
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

26

Aliasing

Cool Trick #3: Aliasing

Map the same physical page
at several virtual addresses

Q: Why?

V R W X
Physical Page

Number
0
1 0xC20A3
0
0
1 0xC20A3
1 0x4123B
1 0x00000
0

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

27

Paging

28

Paging
Can we run process larger than physical memory?

• The “virtual” in “virtual memory”

View memory as a “cache” for secondary storage

• Swap memory pages out to disk when not in use

• Page them back in when needed

Assumes Temporal/Spatial Locality

• Pages used recently most likely to be used again soon

29

Paging

Cool Trick #4: Paging/Swapping

Need more bits:

Dirty, RecentlyUsed, …

V R W X D
Physical Page

Number
0 invalid
1 0 0x10045
0 invalid
0 invalid
0 0 disk sector 200
0 0 disk sector 25
1 1 0x00000
0 invalid

0x00000000

0x90000000

0x10045000

0x4123B000

0xC20A3000

25

200

30

Summary
Virtual Memory

• Address Translation

• Pages, page tables, and memory mgmt unit

• Paging

Next time

• Role of Operating System

• Context switches, working set, shared memory

• Performance

• How slow is it

• Making virtual memory fast

• Translation lookaside buffer (TLB)

• Virtual Memory Meets Caching

