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Administrivia 

Lab3 is due next Monday 

 

HW5 is due next Tuesday  

• Download updated version. Use updated version. 
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Goals for Today 
Virtual Memory 

• Address Translation 

• Pages, page tables, and memory mgmt unit 

• Paging 

• Role of Operating System 

• Context switches, working set, shared memory 

• Performance  

• How slow is it 

• Making virtual memory fast 

• Translation lookaside buffer (TLB) 

• Virtual Memory Meets Caching 
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Virtual Memory 
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Big Picture: Multiple Processes 
How to Run multiple processes? 

Time-multiplex a single CPU core (multi-tasking) 

• Web browser, skype, office, … all must co-exist 

 

Many cores per processor (multi-core) 
 or many processors (multi-processor) 

• Multiple programs run simultaneously 
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LB  $1  M[   1   ] 
LB  $2  M[   5   ] 
LB  $3  M[   1   ] 
LB  $3  M[   4   ] 
LB  $2  M[   0   ] 
LB  $2  M[ 12   ] 
LB  $2  M[   5   ] 
LB  $2  M[ 12  ] 
LB  $2  M[   5  ] 
LB  $2  M[ 12  ] 
LB  $2  M[   5  ] 
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Memory: big & slow   vs Caches: small & fast 
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Processor & Memory 
CPU address/data bus... 

 … routed through caches 

 … to main memory 
• Simple, fast, but… 

 

Q: What happens for LW/SW  
to an invalid location? 
• 0x000000000 (NULL) 

• uninitialized pointer 

 

A: Need a memory management unit 
(MMU) 
• Throw (and/or handle) an exception 
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Multiple Processes  
Q: What happens when another program is 

executed concurrently on another processor? 

 

 

 

 

 

A:  The addresses will conflict 

• Even though, CPUs may take  

 turns using memory bus 
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Multiple Processes  
Q: Can we relocate second program? 
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Solution? Multiple processes/processors 
Q: Can we relocate second program? 

A: Yes, but… 

• What if they don’t fit? 

• What if not contiguous? 

• Need to recompile/relink? 

• … 
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All problems in computer science can be solved by 
another level of indirection. 

  

–  David Wheeler 

– or, Butler Lampson 

–  or, Leslie Lamport 

–  or, Steve Bellovin 
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Virtual Memory 
Virtual Memory: A Solution for All Problems 

 

Each process has its own virtual address space 

• Programmer can code as if they own all of memory 

 

On-the-fly at runtime, for each memory access 

• all access is indirect through a virtual address 

• translate fake virtual address to a real physical address 

• redirect load/store to the physical address 
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Address Spaces 

wikipedia 
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Address Space 

Programs load/store to virtual addresses 

Actual memory uses physical addresses 

Memory Management Unit (MMU) 

• Responsible for translating on the fly 

• Essentially, just a big array of integers: 
 paddr = PageTable[vaddr]; 
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Virtual Memory Advantages 
Advantages 

Easy relocation 

• Loader puts code anywhere in physical memory 

• Creates virtual mappings to give illusion of correct layout 

Higher memory utilization 

• Provide illusion of contiguous memory 

• Use all physical memory, even physical address 0x0 

Easy sharing 

• Different mappings for different programs / cores 

And more to come… 
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Address Translation 

Pages, Page Tables, and  

the Memory Management Unit (MMU) 
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Address Translation 
Attempt #1: How does MMU translate addresses?  

 paddr = PageTable[vaddr]; 

Granularity? 

• Per word… 

• Per block… 

• Variable..… 

Typical: 

• 4KB – 16KB pages 

• 4MB – 256MB jumbo pages 
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Address Translation 

Attempt #1: For any access to virtual address: 

• Calculate virtual page number and page offset 

• Lookup physical page number at PageTable[vpn] 

• Calculate physical address as ppn:offset 

vaddr Page Offset Virtual page number 

Page offset Physical page number 

Lookup in PageTable 

paddr 
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Simple PageTable 

Q: Where to store page tables? 

A: In memory, of course… 
Special page table base register 
(CR3:PTBR on x86) 
(Cop0:ContextRegister on MIPS) 

CPU MMU Data 

Read Mem[0x00201538] 

0x00000000 

0x90000000 

0x10045000 

0x4123B000 

0xC20A3000 
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Summary 

vpn pgoff 

Physical Page 
Number 
0x10045 

 0xC20A3 
0x4123B 
0x00000 
0x20340 

vaddr PTBR 



22 

Page Size Example 
Overhead for VM Attempt #1 (example) 

Virtual address space (for each process): 

• total memory: 232 bytes = 4GB 

• page size: 212 bytes = 4KB 

• entries in PageTable? 

• size of PageTable? 

Physical address space: 

• total memory: 229 bytes = 512MB 

• overhead for 10 processes? 
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Invalid Pages 

Cool Trick #1: Don’t map all pages  

Need valid bit for each  
page table entry 

Q: Why? 

V 
Physical Page 

Number 
0 
1 0x10045 
0 
0 
1  0xC20A3 
1 0x4123B 
1 0x00000 
0 

0x00000000 

0x90000000 

0x10045000 

0x4123B000 

0xC20A3000 
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Beyond Flat Page Tables 
Assume most of PageTable is empty 

How to translate addresses?  

10 bits 

PTBR 

10 bits 10 bits vaddr 

PDEntry 

Page Directory 

Page Table 

PTEntry 
Page 

Word 

2 

Multi-level PageTable 

* x86 does exactly this 
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Page Permissions 

Cool Trick #2: Page permissions! 

Keep R, W, X permission bits for  
each page table entry 

Q: Why? 

V R W X 
Physical Page 

Number 
0 
1 0x10045 
0 
0 
1  0xC20A3 
1 0x4123B 
1 0x00000 
0 

0x00000000 

0x90000000 

0x10045000 

0x4123B000 

0xC20A3000 
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Aliasing 

Cool Trick #3: Aliasing 

Map the same physical page 
at several virtual addresses 

Q: Why? 

V R W X 
Physical Page 

Number 
0 
1 0xC20A3 
0 
0 
1  0xC20A3 
1 0x4123B 
1 0x00000 
0 

0x00000000 

0x90000000 

0x10045000 

0x4123B000 

0xC20A3000 
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Paging 
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Paging 
Can we run process larger than physical memory? 

• The “virtual” in “virtual memory” 

View memory as a “cache” for secondary storage 

• Swap memory pages out to disk when not in use 

• Page them back in when needed 

 

Assumes Temporal/Spatial Locality 

• Pages used recently most likely to be used again soon 
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Paging 

Cool Trick #4: Paging/Swapping 

Need more bits: 

Dirty, RecentlyUsed, … 

V R W X D 
Physical Page 

Number 
0 invalid 
1 0 0x10045 
0 invalid 
0 invalid 
0 0  disk sector 200 
0 0 disk sector 25 
1 1 0x00000 
0 invalid 

0x00000000 

0x90000000 

0x10045000 

0x4123B000 

0xC20A3000 

25 

200 
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Summary 
Virtual Memory 

• Address Translation 

• Pages, page tables, and memory mgmt unit 

• Paging 

Next time 

• Role of Operating System 

• Context switches, working set, shared memory 

• Performance  

• How slow is it 

• Making virtual memory fast 

• Translation lookaside buffer (TLB) 

• Virtual Memory Meets Caching 

 

 

 


