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Goals for Today: caches 

Examples of caches: 

• Direct Mapped 

• Fully Associative 

• N-way set associative 

Performance and comparison 

• Hit ratio (conversly, miss ratio) 

• Average memory access time (AMAT) 

• Cache size 
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Cache Performance 
Average Memory Access Time (AMAT) 
Cache Performance (very simplified): 
  L1 (SRAM): 512 x 64 byte cache lines, direct mapped 
 Data cost: 3 cycle per word access 
 Lookup cost: 2 cycle 
  Mem (DRAM): 4GB 
 Data cost: 50 cycle per word, plus 3 cycle per consecutive word 
 
 
 
 
 
 

Performance depends on: 
 Access time for hit, miss penalty, hit rate 
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Misses 
Cache misses: classification 

The line is being referenced for the first time 

• Cold (aka Compulsory) Miss 

The line was in the cache, but has been evicted 
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Avoiding Misses 
Q: How to avoid… 

Cold Misses 

• Unavoidable? The data was never in the cache… 

• Prefetching! 

Other Misses 

• Buy more SRAM 

• Use a more flexible cache design 
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Bigger cache doesn’t always help… 

Mem access trace: 0, 16, 1, 17, 2, 18, 3, 19, 4, … 

Hit rate with four direct-mapped 2-byte cache lines? 

 

 

With eight 2-byte cache lines? 

 

 

With four 4-byte cache lines? 
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Misses 
Cache misses: classification 

The line is being referenced for the first time 

• Cold (aka Compulsory) Miss 

The line was in the cache, but has been evicted… 

… because some other access with the same index 

• Conflict Miss 

… because the cache is too small 

• i.e. the working set of program is larger than the cache 

• Capacity Miss 
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Avoiding Misses 
Q: How to avoid… 

Cold Misses 

• Unavoidable? The data was never in the cache… 

• Prefetching! 

Capacity Misses 

• Buy more SRAM 

Conflict Misses 

• Use a more flexible cache design 
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Three common designs 
A given data block can be placed… 

• … in any cache line  Fully Associative 

• … in exactly one cache line  Direct Mapped 

• … in a small set of cache lines  Set Associative 
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Comparison: Direct Mapped 

110 

130 

150 

160 

180 

200 

220 

240 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Processor Memory 

100 

120 

140 

170 

190 

210 

230 

250 

Misses:    

Hits:        

Cache 

tag    data 

2 

100 

110 

150 

140 1 

0 

0 

4 cache lines 
2 word block 
 

2 bit tag field 
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Using byte addresses in this example! Addr Bus = 5 bits 
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Comparison: 2 Way Set Assoc 
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Comparison: 2 Way Set Assoc 
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Direct Mapped Cache (Reading) 

V Tag Block 

 Tag Index Offset 
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Direct Mapped Cache Size 

n bit index, m bit offset 

Q: How big is cache (data only)? 

Q: How much SRAM needed (data + overhead)? 

 

 Tag Index Offset 
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Direct Mapped Cache Size 

n bit index, m bit offset 

Q: How big is cache (data only)? 

Q: How much SRAM needed (data + overhead)? 

Cache of size 2n blocks 

Block size of 2m bytes 

Tag field: 32 – (n + m) 

Valid bit: 1 

 

Bits in cache: 2n x (block size + tag size + valid bit size)  

= 2n (2m bytes x 8 bits-per-byte + (32-n-m) + 1) 

 

 Tag Index Offset 
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Fully Associative Cache (Reading) 

V Tag Block 

word select 

hit? data 

line select 

= = = = 

32bits 

64bytes 

 Tag   Offset 
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Fully Associative Cache Size 

m bit offset 

Q: How big is cache (data only)? 

Q: How much SRAM needed (data + overhead)? 

 Tag   Offset 

, 2n cache lines 



23 

Fully Associative Cache Size 

m bit offset 

Q: How big is cache (data only)? 

Q: How much SRAM needed (data + overhead)? 

Cache of size 2n blocks 

Block size of 2m bytes 

Tag field: 32 – m 

Valid bit: 1 

 

Bits in cache: 2n x (block size + tag size + valid bit size)  

= 2n (2m bytes x 8 bits-per-byte + (32-m) + 1) 

 

 Tag   Offset 

, 2n cache lines 
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Fully-associative reduces conflict misses... 

 … assuming good eviction strategy 

Mem access trace: 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, … 

Hit rate with four fully-associative 2-byte cache lines? 
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… but large block size can still reduce hit rate 

vector add trace: 0, 100, 200, 1, 101, 201, 2, 202, … 

Hit rate with four fully-associative 2-byte cache lines? 

 

 

 

 

With two fully-associative 4-byte cache lines? 
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Misses 
Cache misses: classification 

Cold (aka Compulsory) 

• The line is being referenced for the first time 

Capacity 

• The line was evicted because the cache was too small 

• i.e. the working set of program is larger than the 
cache 

Conflict 

• The line was evicted because of another access 
whose index conflicted 
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Cache Tradeoffs 
Direct Mapped 
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Pathological Cases? 
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Administrivia 

Prelim2 today, Thursday, March 29th at 7:30pm  

• Location is Phillips 101 and prelim2 starts at 7:30pm 

 

Project2 due next Monday, April 2nd 
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Summary 
Caching assumptions 
• small working set: 90/10 rule 

• can predict future: spatial & temporal locality 

Benefits 
• big & fast memory built from (big & slow) + (small & fast) 

Tradeoffs:  
associativity, line size, hit cost, miss penalty, hit rate 
• Fully Associative  higher hit cost, higher hit rate 

• Larger block size  lower hit cost, higher miss penalty 

 

 

Next up: other designs; writing to caches 


