
Caches

Hakim Weatherspoon
CS 3410, Spring 2012

Computer Science
Cornell University

See P&H 5.1, 5.2 (except writes)

2

Write-
Back Memory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

Big Picture: Memory

alu

memory

din dout

addr

PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B

A

ct

rl

ct
rl

ct
rl

B

D

D

M

compute
jump/branch

targets

+4

forward
unit

detect
hazard

Memory: big & slow vs Caches: small & fast

3

Goals for Today: caches

Examples of caches:

• Direct Mapped

• Fully Associative

• N-way set associative

Performance and comparison

• Hit ratio (conversly, miss ratio)

• Average memory access time (AMAT)

• Cache size

4

Cache Performance
Average Memory Access Time (AMAT)
Cache Performance (very simplified):
 L1 (SRAM): 512 x 64 byte cache lines, direct mapped
 Data cost: 3 cycle per word access
 Lookup cost: 2 cycle
 Mem (DRAM): 4GB
 Data cost: 50 cycle per word, plus 3 cycle per consecutive word

Performance depends on:
 Access time for hit, miss penalty, hit rate

5

Misses
Cache misses: classification

The line is being referenced for the first time

• Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted

6

Avoiding Misses
Q: How to avoid…

Cold Misses

• Unavoidable? The data was never in the cache…

• Prefetching!

Other Misses

• Buy more SRAM

• Use a more flexible cache design

7

Bigger cache doesn’t always help…

Mem access trace: 0, 16, 1, 17, 2, 18, 3, 19, 4, …

Hit rate with four direct-mapped 2-byte cache lines?

With eight 2-byte cache lines?

With four 4-byte cache lines?

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

8

Misses
Cache misses: classification

The line is being referenced for the first time

• Cold (aka Compulsory) Miss

The line was in the cache, but has been evicted…

… because some other access with the same index

• Conflict Miss

… because the cache is too small

• i.e. the working set of program is larger than the cache

• Capacity Miss

9

Avoiding Misses
Q: How to avoid…

Cold Misses

• Unavoidable? The data was never in the cache…

• Prefetching!

Capacity Misses

• Buy more SRAM

Conflict Misses

• Use a more flexible cache design

10

Three common designs
A given data block can be placed…

• … in any cache line  Fully Associative

• … in exactly one cache line  Direct Mapped

• … in a small set of cache lines  Set Associative

11

LB $1  M[1]
LB $2  M[5]
LB $3  M[1]
LB $3  M[4]
LB $2  M[0]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]

Comparison: Direct Mapped

110

130

150

160

180

200

220

240

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Processor Memory

100

120

140

170

190

210

230

250

Misses:

Hits:

Cache

tag data

2

100

110

150

140 1

0

0

4 cache lines
2 word block

2 bit tag field
2 bit index field
1 bit block offset field

Using byte addresses in this example! Addr Bus = 5 bits

12

LB $1  M[1]
LB $2  M[5]
LB $3  M[1]
LB $3  M[4]
LB $2  M[0]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]

Comparison: Direct Mapped

110

130

150

160

180

200

220

240

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Processor Memory

100

120

140

170

190

210

230

250

Misses: 8

Hits: 3

Cache

00

tag data

2

100

110

150

140

1

1

0

0 0

00

230

220 1

0

180

190

150

140

110

100

4 cache lines
2 word block

2 bit tag field
2 bit index field
1 bit block offset field

Using byte addresses in this example! Addr Bus = 5 bits

M
M
H
H
H

M
M
M
M
M
M

13

LB $1  M[1]
LB $2  M[5]
LB $3  M[1]
LB $3  M[4]
LB $2  M[0]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]

Comparison: Fully Associative

110

130

150

160

180

200

220

240

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Processor Memory

100

120

140

170

190

210

230

250

Misses:

Hits:

Cache

tag data

0

4 cache lines
2 word block

4 bit tag field
1 bit block offset field

Using byte addresses in this example! Addr Bus = 5 bits

14

LB $1  M[1]
LB $2  M[5]
LB $3  M[1]
LB $3  M[4]
LB $2  M[0]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]

Comparison: Fully Associative

110

130

150

160

180

200

220

240

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Processor Memory

100

120

140

170

190

210

230

250

Misses: 3

Hits: 8

Cache

0000

tag data

0010

100

110

150

140

1

1

1

0

0110 220

230

4 cache lines
2 word block

4 bit tag field
1 bit block offset field

Using byte addresses in this example! Addr Bus = 5 bits

M
M
H
H
H

M
H
H
H
H
H

15

Comparison: 2 Way Set Assoc

110

130

150

160

180

200

220

240

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Processor
Memory

100

120

140

170

190

210

230

250

Misses:

Hits:

Cache

tag data

0

0

0

0

2 sets
2 word block
3 bit tag field
1 bit set index field
1 bit block offset field LB $1  M[1]

LB $2  M[5]
LB $3  M[1]
LB $3  M[4]
LB $2  M[0]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]

Using byte addresses in this example! Addr Bus = 5 bits

16

Comparison: 2 Way Set Assoc

110

130

150

160

180

200

220

240

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Processor
Memory

100

120

140

170

190

210

230

250

Misses: 4

Hits: 7

Cache

tag data

0

0

0

0

2 sets
2 word block
3 bit tag field
1 bit set index field
1 bit block offset field LB $1  M[1]

LB $2  M[5]
LB $3  M[1]
LB $3  M[4]
LB $2  M[0]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]
LB $2  M[12]
LB $2  M[5]

Using byte addresses in this example! Addr Bus = 5 bits

M
M
H
H
H

M
M
H
H
H
H

17

Cache Size

18

Direct Mapped Cache (Reading)

V Tag Block

 Tag Index Offset

=

hit? data

word select

32bits

19

Direct Mapped Cache Size

n bit index, m bit offset

Q: How big is cache (data only)?

Q: How much SRAM needed (data + overhead)?

 Tag Index Offset

20

Direct Mapped Cache Size

n bit index, m bit offset

Q: How big is cache (data only)?

Q: How much SRAM needed (data + overhead)?

Cache of size 2n blocks

Block size of 2m bytes

Tag field: 32 – (n + m)

Valid bit: 1

Bits in cache: 2n x (block size + tag size + valid bit size)

= 2n (2m bytes x 8 bits-per-byte + (32-n-m) + 1)

 Tag Index Offset

21

Fully Associative Cache (Reading)

V Tag Block

word select

hit? data

line select

= = = =

32bits

64bytes

 Tag Offset

22

Fully Associative Cache Size

m bit offset

Q: How big is cache (data only)?

Q: How much SRAM needed (data + overhead)?

 Tag Offset

, 2n cache lines

23

Fully Associative Cache Size

m bit offset

Q: How big is cache (data only)?

Q: How much SRAM needed (data + overhead)?

Cache of size 2n blocks

Block size of 2m bytes

Tag field: 32 – m

Valid bit: 1

Bits in cache: 2n x (block size + tag size + valid bit size)

= 2n (2m bytes x 8 bits-per-byte + (32-m) + 1)

 Tag Offset

, 2n cache lines

24

Fully-associative reduces conflict misses...

 … assuming good eviction strategy

Mem access trace: 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, …

Hit rate with four fully-associative 2-byte cache lines?

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

25

… but large block size can still reduce hit rate

vector add trace: 0, 100, 200, 1, 101, 201, 2, 202, …

Hit rate with four fully-associative 2-byte cache lines?

With two fully-associative 4-byte cache lines?

26

Misses
Cache misses: classification

Cold (aka Compulsory)

• The line is being referenced for the first time

Capacity

• The line was evicted because the cache was too small

• i.e. the working set of program is larger than the
cache

Conflict

• The line was evicted because of another access
whose index conflicted

27

Cache Tradeoffs
Direct Mapped

+ Smaller

+ Less

+ Less

+ Faster

+ Less

+ Very

– Lots

– Low

– Common

Fully Associative

Larger –

More –

More –

Slower –

More –

Not Very –

Zero +

High +

?

Tag Size

SRAM Overhead

Controller Logic

Speed

Price

Scalability

of conflict misses

Hit rate

Pathological Cases?

28

Administrivia

Prelim2 today, Thursday, March 29th at 7:30pm

• Location is Phillips 101 and prelim2 starts at 7:30pm

Project2 due next Monday, April 2nd

29

Summary
Caching assumptions
• small working set: 90/10 rule

• can predict future: spatial & temporal locality

Benefits
• big & fast memory built from (big & slow) + (small & fast)

Tradeoffs:
associativity, line size, hit cost, miss penalty, hit rate
• Fully Associative  higher hit cost, higher hit rate

• Larger block size  lower hit cost, higher miss penalty

Next up: other designs; writing to caches

