
Calling Conventions

Hakim Weatherspoon
CS 3410, Spring 2012

Computer Science
Cornell University

See P&H 2.8 and 2.12

2

Goals for Today
Review: Calling Conventions

• call a routine (i.e. transfer control to procedure)

• pass arguments
• fixed length, variable length, recursively

• return to the caller
• Putting results in a place where caller can find them

• Manage register

Today

• More on Calling Conventions

• globals vs local accessible data

• callee vs callrer saved registers

• Calling Convention examples and debugging

3

Goals for Today
Review: Calling Conventions

• call a routine (i.e. transfer control to procedure)

• pass arguments
• fixed length, variable length, recursively

• return to the caller
• Putting results in a place where caller can find them

• Manage register

Today

• More on Calling Conventions

• globals vs local accessible data

• callee vs callrer saved registers

• Calling Convention examples and debugging

Warning: There is no one true MIPS calling convention.
lecture != book != gcc != spim != web

4

Recap: Conventions so far
• first four arg words passed in $a0, $a1, $a2, $a3

• remaining arg words passed in parent’s stack frame

• return value (if any) in $v0, $v1

• stack frame at $sp
– contains $ra (clobbered on JAL to sub-functions)

– contains $fp

– contains local vars (possibly

 clobbered by sub-functions)

– contains extra arguments to sub-functions

 (i.e. argument “spilling)

– contains space for first 4 arguments

 to sub-functions

• callee save regs are preserved

• caller save regs are not

• Global data accessed via $gp

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp

$sp

5

MIPS Register Conventions
r0 $zero zero

r1 $at assembler temp

r2 $v0 function
return values r3 $v1

r4 $a0

function
arguments

r5 $a1

r6 $a2

r7 $a3

r8 $t0

temps
(caller save)

r9 $t1
r10 $t2
r11 $t3
r12 $t4
r13 $t5
r14 $t6
r15 $t7

r16 $s0

saved
(callee save)

r17 $s1

r18 $s2

r19 $s3

r20 $s4

r21 $s5

r22 $s6

r23 $s7

r24 $t8 more temps
(caller save) r25 $t9

r26 $k0 reserved for
kernel r27 $k1

r28 $gp global data pointer
r29 $sp stack pointer
r30 $fp frame pointer
r31 $ra return address

6

Globals and Locals

Global variables in data segment
• Exist for all time, accessible to all routines

Dynamic variables in heap segment
• Exist between malloc() and free()

Local variables in stack frame
• Exist solely for the duration of the stack frame

Dangling pointers into freed heap mem are bad

Dangling pointers into old stack frames are bad
• C lets you create these, Java does not

• int *foo() { int a; return &a; }

7

Caller-saved vs. Callee-saved
Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

Caller-save registers are responsibility of the caller
• Caller-save register values saved only if used after call/return
• The callee function can use caller-saved registers

Callee-save register are the responsibility of the callee
• Values must be saved by callee before they can be used
• Caller can assume that these registers will be restored

8

Caller-saved vs. Callee-saved
Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

MIPS ($t0-$t0), x86 (eax, ecx, and edx) are caller-save…
• … a function can freely modify these registers
• … but must assume that their contents have been destroyed if it in

turns calls a function.

MIPS $s0 - $s7), x86 (ebx, esi, edi, ebp, esp) are callee-save
• A function may call another function and know that the callee-save

registers have not been modified
• However, if it modifies these registers itself, it must restore them to

their original values before returning.

9

Caller-saved vs. Callee-saved
Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

A caller-save register must be saved and restored around
any call to a subprogram.
In contrast, for a callee-save register, a caller need do no
extra work at a call site (the callee saves and restores the
register if it is used).

10

Caller-saved vs. Callee-saved
Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

CALLER SAVED: MIPS calls these temporary registers, $t0-t9

• the calling program saves the registers that it does not want a
called procedure to overwrite

• register values are NOT preserved across procedure calls

CALLEE SAVED: MIPS calls these saved registers, $s0-s8

• register values are preserved across procedure calls

• the called procedure saves register values in its AR, uses the
registers for local variables, restores register values before it
returns.

11

Caller-saved vs. Callee-saved
Caller-save: If necessary… ($t0 .. $t9)
• save before calling anything; restore after it returns

Callee-save: Always… ($s0 .. $s7)
• save before modifying; restore before returning

Registers $t0-$t9 are caller-saved registers
• … that are used to hold temporary quantities

• … that need not be preserved across calls

Registers $s0-s8 are callee-saved registers
• … that hold long-lived values

• … that should be preserved across calls

12

Calling Convention Example
int test(int a, int b) {

 int tmp = (a&b)+(a|b);

 int s = sum(tmp,1,2,3,4,5);

 int u = sum(s,tmp,b,a,b,a);

 return u + a + b;

}

13

Calling Convention Example:

Prolog, Epilog

14

Minimum stack size for a standard function?

15

Leaf Functions

Leaf function does not invoke any other functions

int f(int x, int y) { return (x+y); }

16

Anatomy of an executing program
0xfffffffc

0x00000000

top

bottom

0x7ffffffc
0x80000000

0x10000000

0x00400000

system reserved

stack

system reserved

code (text)

static data

dynamic data (heap)

17

Debugging
init(): 0x400000
printf(s, …): 0x4002B4
vnorm(a,b): 0x40107C
main(a,b): 0x4010A0
pi: 0x10000000
str1: 0x10000004

0x00000000
0x004010c4
0x00000000

0x00000000

0x0040010a
0x00000000
0x00000000

0x0040010c

0x00000015
0x10000004

0x00401090

0x00000000

0x00000000

CPU:
$pc=0x004003C0
$sp=0x7FFFFFAC
$ra=0x00401090

0x7FFFFFB0

What func is running?

Who called it?

Has it called anything?

Will it?

Args?

Stack depth?

Call trace?

18

Administrivia

Upcoming agenda

• Schedule PA2 Design Doc Mtg for this Sunday or Monday

• HW3 due next Tuesday, March 13th

• PA2 Work-in-Progress circuit due before spring break

• Spring break: Saturday, March 17th to Sunday, March 25th

• HW4 due after spring break, before Prelim2

• Prelim2 Thursday, March 29th, right after spring break

• PA2 due Monday, April 2nd, after Prelim2

19

Recap
• How to write and Debug a MIPS program using calling

convention
• first four arg words passed in $a0, $a1, $a2, $a3
• remaining arg words passed in parent’s stack frame
• return value (if any) in $v0, $v1
• stack frame at $sp

– contains $ra (clobbered on JAL to sub-functions)
– contains $fp
– contains local vars (possibly
 clobbered by sub-functions)
– contains extra arguments to sub-functions
 (i.e. argument “spilling)
– contains space for first 4 arguments
 to sub-functions

• callee save regs are preserved
• caller save regs are not
• Global data accessed via $gp

saved ra
saved fp

saved regs
($s0 ... $s7)

locals

outgoing
args

$fp

$sp

