
Pipeline Hazards

Hakim Weatherspoon
CS 3410, Spring 2012

Computer Science
Cornell University

See P&H Appendix 4.7

2

Write-
Back Memory

Instruction
Fetch Execute

Instruction
Decode

extend

register
file

control

Pipelined Processor

alu

memory

din dout

addr

PC

memory

new

pc

in
st

IF/ID ID/EX EX/MEM MEM/WB

im
m

B

A

ct

rl

ct
rl

ct
rl

B

D

D

M

compute
jump/branch

targets

+4

3

IF/ID

+4

ID/EX EX/MEM MEM/WB

mem

din dout

addr in
st

P

C
+4

O
P

B

A

R

t

B

D

M

D

P
C

+4

im
m

O
P

R

d

O
P

R

d
 PC

inst
mem

Rd

Ra Rb

D
B

A

R
d

Pipelined Processor

4

Administrivia
Prelim1: next Tuesday, February 28th in evening

• Location: GSH132: Goldwin Smith Hall room 132

• Time: We will start at 7:30pm sharp, so come early

• Prelim Review: This Wed / Fri, 3:30-5:30pm, in 155 Olin

• Closed Book
• Cannot use electronic device or outside material

• Practice prelims are online in CMS

• Material covered everything up to end of this week
• Appendix C (logic, gates, FSMs, memory, ALUs)

• Chapter 4 (pipelined [and non-pipeline] MIPS processor with hazards)

• Chapters 2 (Numbers / Arithmetic, simple MIPS instructions)

• Chapter 1 (Performance)

• HW1, HW2, Lab0, Lab1, Lab2

5

Administrivia

HW2 was due two days ago!
• Fill out Survey online. Receive credit/points on homework for survey:
• https://cornell.qualtrics.com/SE/?SID=SV_5olFfZiXoWz6pKI
• Survey is anonymous

Project1 (PA1) due week after prelim
• Continue working diligently. Use design doc momentum

Save your work!
• Save often. Verify file is non-zero. Periodically save to Dropbox, email.
• Beware of MacOSX 10.5 (leopard) and 10.6 (snow-leopard)

Use your resources
• Lab Section, Piazza.com, Office Hours, Homework Help Session,
• Class notes, book, Sections, CSUGLab

6

Administrivia

Check online syllabus/schedule

• http://www.cs.cornell.edu/Courses/CS3410/2012sp/schedule.html

Slides and Reading for lectures

Office Hours

Homework and Programming Assignments

Prelims (in evenings):
• Tuesday, February 28th

• Thursday, March 29th

• Thursday, April 26th

Schedule is subject to change

7

Collaboration, Late, Re-grading Policies

“Black Board” Collaboration Policy
• Can discuss approach together on a “black board”
• Leave and write up solution independently
• Do not copy solutions

Late Policy
• Each person has a total of four “slip days”
• Max of two slip days for any individual assignment
• Slip days deducted first for any late assignment,
 cannot selectively apply slip days
• For projects, slip days are deducted from all partners
• 20% deducted per day late after slip days are exhausted

Regrade policy
• Submit written request to lead TA,
 and lead TA will pick a different grader
• Submit another written request,
 lead TA will regrade directly
• Submit yet another written request for professor to regrade.

8

Goals for Today

Data Hazards

• Data dependencies

• Problem, detection, and solutions

– (delaying, stalling, forwarding, bypass, etc)

• Forwarding unit

• Hazard detection unit

Next time

• Control Hazards

 What is the next instruction to execute if

 a branch is taken? Not taken?

9

Broken Example

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

IF ID MEM WB

Clock cycle
1 2 3 4 5 6 7 8 9

sub r5, r3, r4

 lw r6, 4(r3)

 or r5, r3, r5

sw r6, 12(r3)

add r3, r1, r2

10

What Can Go Wrong?

Data Hazards

• register file reads occur in stage 2 (ID)

• register file writes occur in stage 5 (WB)

• next instructions may read values about to be written

How to detect? Logic in ID stage:

 stall = (IF/ID.rA != 0 && (IF/ID.rA == ID/EX.rD ||
 IF/ID.rA == EX/M.rD ||
 IF/ID.rA == M/WB.rD))

 || (same for rB)

11

IF/ID

+4

ID/EX EX/MEM MEM/WB

mem

din dout

addr in
st

P

C
+4

O
P

B

A

R

t

B

D

M

D

P
C

+4

im
m

O
P

R

d

O
P

R

d
 PC

inst
mem

Rd

Ra Rb

D
B

A

detect
hazard

Detecting Data Hazards

add r3, r1, r2
sub r5, r3, r5
or r6, r3, r4
add r6, r3, r8

R
d

12

Resolving Data Hazards

What to do if data hazard detected?

13

Stalling
Clock cycle

1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r5

or r6, r3, r4

add r6, r3, r8

14

Stalling

data
mem

B

A

B

D

M

D
inst

mem

D
rD B

A

R
d

R
d

R
d

W
E

W
E

O
p

W
E

O
p

rA rB

PC

+4

O
p

 nop

in
st

/stall

15

Stalling

How to stall an instruction in ID stage

• prevent IF/ID pipeline register update

– stalls the ID stage instruction

• convert ID stage instr into nop for later stages

– innocuous “bubble” passes through pipeline

• prevent PC update

– stalls the next (IF stage) instruction

16

Forwarding
Clock cycle

1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r5

or r6, r3, r4

add r6, r3, r8

17

Forwarding
Clock cycle

1 2 3 4 5 6 7 8

add r3, r1, r2

sub r5, r3, r4

lw r6, 4(r3)

or r5, r3, r5

sw r6, 12(r3)

18

Forwarding

Forward correct value from?

1. ALU output: too late in cycle?

2. EX/MEM.D pipeline register
(output from ALU)

3. WB data value (output from
ALU or memory)

4. MEM output: too late in cycle,
on critical path

to?

a) ID (just after register file)
– maybe pointless?

b) EX, just after ID/EX.A and
ID/EX.B are read

c) MEM, just after EX/MEM.B
is read: on critical path

data
mem

B

A

B

D

M

D
inst

mem

D

B

A

19

Forwarding Path 1

add r4, r1, r2

nop

sub r6, r4, r1

data
mem

inst
mem

D

B

A

20

WB to EX Bypass

WB to EX Bypass

• EX needs value being written by WB

Resolve:

 Add bypass from WB final value to start of EX

Detect:

21

Forwarding Path 2

add r4, r1, r2

sub r6, r4, r1

data
mem

inst
mem

D

B

A

22

MEM to EX Bypass

MEM to EX Bypass

• EX needs ALU result that is still in MEM stage

Resolve:

 Add a bypass from EX/MEM.D to start of EX

Detect:

23

Forwarding Datapath

data
mem

B

A

B

D

M

D

inst
mem

D

B

A

R
d

R
d

R
b

W
E

W
E

M
C

 R
a

M
C

24

Tricky Example

data
mem

inst
mem

D

B

A

add r1, r1, r2

SUB r1, r1, r3

OR r1, r4, r1

25

More Data Hazards

add r4, r1, r2

nop

nop

sub r6, r4, r1

data
mem

inst
mem

D

B

A

26

Register File Bypass

Register File Bypass

• Reading a value that is currently being written

Detect:

 ((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
 and (WB is writing a register)

Resolve:

 Add a bypass around register file (WB to ID)

 Better: (Hack) just negate register file clock
– writes happen at end of first half of each clock cycle

– reads happen during second half of each clock cycle

27

Memory Load Data Hazard

lw r4, 20(r8)

sub r6, r4, r1

data
mem

inst
mem

D

B

A

28

Resolving Memory Load Hazard

Load Data Hazard

• Value not available until WB stage

• So: next instruction can’t proceed if hazard detected

Resolution:

• MIPS 2000/3000: one delay slot

– ISA says results of loads are not available until one cycle later

– Assembler inserts nop, or reorders to fill delay slot

• MIPS 4000 onwards: stall

– But really, programmer/compiler reorders to avoid stalling in
the load delay slot

29

Data Hazard Recap

Delay Slot(s)
• Modify ISA to match implementation

Stall
• Pause current and all subsequent instructions

Forward/Bypass
• Try to steal correct value from elsewhere in pipeline

• Otherwise, fall back to stalling or require a delay slot

Tradeoffs?

30

More Hazards

beq r1, r2, L

add r3, r0, r3

sub r5, r4, r6

L: or r3, r2, r4

data
mem

inst
mem

D

B

A

PC

+4

31

More Hazards

beq r1, r2, L

add r3, r0, r3

sub r5, r4, r6

L: or r3, r2, r4

data
mem

inst
mem

D

B

A

PC

+4

32

Control Hazards
Control Hazards
• instructions are fetched in stage 1 (IF)
• branch and jump decisions occur in stage 3 (EX)
• i.e. next PC is not known until 2 cycles after branch/jump

Delay Slot
• ISA says N instructions after branch/jump always executed

– MIPS has 1 branch delay slot

Stall (+ Zap)
• prevent PC update
• clear IF/ID pipeline register

– instruction just fetched might be wrong one, so convert to nop

• allow branch to continue into EX stage

33

Delay Slot

beq r1, r2, L

ori r2, r0, 1

L: or r3, r1, r4

data
mem

inst
mem

D

B

A

PC

+4

branch
calc

decide
branch

34

Control Hazards: Speculative Execution

Control Hazards
• instructions are fetched in stage 1 (IF)

• branch and jump decisions occur in stage 3 (EX)

• i.e. next PC not known until 2 cycles after branch/jump

Stall

Delay Slot

Speculative Execution
• Guess direction of the branch

– Allow instructions to move through pipeline

– Zap them later if wrong guess

• Useful for long pipelines

35

Loops

36

Branch Prediction

37

Pipelining: What Could Possibly Go

Wrong?
Data hazards
• register file reads occur in stage 2 (IF)

• register file writes occur in stage 5 (WB)

• next instructions may read values soon to be written

Control hazards
• branch instruction may change the PC in stage 3 (EX)

• next instructions have already started executing

Structural hazards
• resource contention

• so far: impossible because of ISA and pipeline design

