Pipeline Hazards

Hakim Weatherspoon
CS 3410, Spring 2012
Computer Science
Cornell University

See P&H Appendix 4.7

Pipelined Processor

memory

IF/ID

register
file

ID/EX

compute
jump/branch
targets
Write-
Execute Back

EX/MEM MEM/WB

Pipelined Processor

rd ATS
inst 3D)) SHa) =S
mem - Bl—=| oo =N\
> & Ra Rb addr
IN E SN
c CD_>d|n dout_>§ 4
¥ mem
I &
[X
PC < § — —
(_ o o o
“ (ol (ol (al
< ® ® ®
@

IF/ID ID/EX EX/MEM MEM/WB

3

Administrivia
Prelim1: next Tuesday, February 28% in evening
e Location: GSH132: Goldwin Smith Hall room 132

* Time: We will start at 7:30pm sharp, so come early
* Prelim Review: This Wed / Fri, 3:30-5:30pm, in 155 Olin

e (Closed Book

. Cannot use electronic device or outside material
* Practice prelims are online in CMS

 Material covered everything up to end of this week
 Appendix C (logic, gates, FSMs, memory, ALUs)
 Chapter 4 (pipelined [and non-pipeline] MIPS processor with hazards)
Chapters 2 (Numbers / Arithmetic, simple MIPS instructions)
 Chapter 1 (Performance)
e HWI1, HW2, Lab0, Lab1l, Lab2

Administrivia

HW?2 was due two days ago!

* Fill out Survey online. Receive credit/points on homework for survey:
* https://cornell.qualtrics.com/SE/?SID=SV_50lFfZiXoWz6pKI
* Survey is anonymous

Projectl (PA1) due week after prelim
e Continue working diligently. Use design doc momentum

Save your work!

e Save often. Verify file is non-zero. Periodically save to Dropbox, email.
e Beware of MacOSX 10.5 (leopard) and 10.6 (snow-leopard)

Use your resources
* Lab Section, Piazza.com, Office Hours, Homework Help Session,
* Class notes, book, Sections, CSUGLab

Administrivia

Check online syllabus/schedule

 http://www.cs.cornell.edu/Courses/CS3410/2012sp/schedule.html
Slides and Reading for lectures
Office Hours
Homework and Programming Assignments
Prelims (in evenings):
* Tuesday, February 28t

e Thursday, March 29t
* Thursday, April 26t

Schedule is subject to change

Collaboration, Late, Re-grading Policies

“Black Board” Collaboration Policy

« Can discuss approach together on a “black board”
« Leave and write up solution independently

- Do not copy solutions

Late Policy

« Each person has a total of four “slip days”

Max of two slip days for any individual assignment

Slip days deducted first for any late assignment,

cannot selectively apply slip days

For projects, slip days are deducted from all partners
20% deducted per day late after slip days are exhausted

Regrade policy
« Submit written request to lead TA,
and lead TA will pick a different grader
« Submit another written request,
lead TA will regrade directly
« Submit yet another written request for professor to regrade.

Goals for Today

Data Hazards
 Data dependencies

* Problem, detection, and solutions
— (delaying, stalling, forwarding, bypass, etc)

 Forwarding unit
e Hazard detection unit

Next time

* Control Hazards
What is the next instruction to execute if
a branch is taken? Not taken?

Broken Example

addr3,r1, r2

subr5,r3,r4

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

v

Clock cycle
1 2 3 4 5 6 7 8 9)
IF 11D (>>r MEMH—WB
F Fio [hrMeMws
F 11D (})J'-}V_Ervﬁ—ws
IF {1 (>>~M'WB
IF IHDT'D MEMH-WB

What Can Go Wrong?

Data Hazards
 register file reads occur in stage 2 (ID)
 register file writes occur in stage 5 (WB)
* next instructions may read values about to be written

How to detect? Logic in ID stage:

stall = (IF/ID.rA '= 0 && (IF/ID.rA == ID/EX.rD ||
IF/ID.rA == EX/M.rD | |
IF/ID.rA == M/WB.rD))

|| (same for rB)

10

Detecting Data Hazards

add r3,rl1, r2 Rd A<
sub r5, r3, r5 (D > ‘o) SHa) =S
orr6, r3, rd Bl oo =N\ l
add r6, r3, r8 + |
= Ra Rb addr
y \ = S
' —1 | = dln dout N E d
< mem
detect & €
S a
PC| 1| ¢ |\hazard/ [— —
& (a'et o
e
@
P ('l ('l ('l
@ O O
@

IF/ID ID/EX EX/MEM MEM/WB

11

Resolving Data Hazards

What to do if data hazard detected?

12

Stalling

addr3,rl, r2

sub r5, r3, r5

orre, r3,r4

add r6, r3, r8

1

Clock cycle
2

3

4

13

Stalling

inst

mem >

PC

inst

Tt

A=A
>{ D
rD B_>B_>
rA rB
é
&
=
glefe D o
@)

/stall

o

data
mem

<

Rd

Op || WE

Rd

Op || WE

14

Stalling

How to stall an instruction in ID stage

» prevent IF/ID pipeline register update
— stalls the ID stage instruction

e convert ID stage instr into nop for later stages
— innocuous “bubble” passes through pipeline

* prevent PC update
— stalls the next (IF stage) instruction

15

Forwarding

addr3,rl, r2

sub r5, r3, r5

orre, r3,r4

add r6, r3, r8

1

Clock cycle
2

3

4

5

16

Forwarding

Clock cycle
1 2 3 4 5

addr3,rl, r2

sub r5, r3, rd

lw r6, 4(r3)

orr5,r3,r5

sw r6, 12(r3)

17

Forwarding

AF—lA N
2D > 1D l >D—>\
inst BI—{BI— /
mem data
N B[mem _>M_>/

Forward correct value from? to?

1. ALU output: too late in cycle? ID (just after register file)
2. EX/MEM.D pipeline register — maybe pointless?

(output from ALU) EX, just after ID/EX.A and
3. WB data value (output from ID/EX.B are read

ALU or memory) MEM, just after EX/MEM.B
4. MEM output: too late in cycle, is read: on critical path

on critical path

18

inst
mem

addr4,rl, r2

nop

subr6, r4, rl

D

A

B

N\

>

>

>

Forwarding Path 1

)

i

}/

l

data
mem

19

WB to EX Bypass

WB to EX Bypass
* EX needs value being written by WB

Resolve:
Add bypass from WB final value to start of EX
Detect:

20

Forwarding Path 2

-
inst
mem
addr4,rl, r2

sub r6, r4, rl

>

data
mem

pA

MEM to EX Bypass

MEM to EX Bypass
 EX needs ALU result that is still in MEM stage

Resolve:
Add a bypass from EX/MEM.D to start of EX
Detect:

Py

Forwarding Datapath

23

/ AN

l%lwlg_u;_z.

“H»I_Dll/l oo [T pu [Iam][ow]]
/\\

é —

A

inst

mem

addrl, rl, r2

SUBrl,rl, r3

ORrl, r4, rl

Tricky Example

data
mem

More Data Hazards

data

mem

1D
inst
mem
addr4,rl, r2
nop
nop

subr6, r4, rl

\ 4

Reqister File Bypass
Register File Bypass

* Reading a value that is currently being written
Detect:

((Ra == MEM/WB.Rd) or (Rb == MEM/WB.Rd))
and (WB is writing a register)

Resolve:
Add a bypass around register file (WB to ID)
Better: (Hack) just negate register file clock

— writes happen at end of first half of each clock cycle
— reads happen during second half of each clock cycle

26

Memory Load Data Hazard

"

data
mem

D
inst
mem
lw r4, 20(r8)

sub r6, r4, rl

\4

27

Resolving Memory Load Hazard
Load Data Hazard

* Value not available until WB stage
e So: next instruction can’t proceed if hazard detected

Resolution:
e MIPS 2000/3000: one delay slot

— ISA says results of loads are not available until one cycle later
— Assembler inserts nop, or reorders to fill delay slot

e MIPS 4000 onwards: stall

— But really, programmer/compiler reorders to avoid stalling in
the load delay slot

28

Data Hazard Recap

Delay Slot(s)
* Modify ISA to match implementation

Stall

e Pause current and all subsequent instructions

Forward/Bypass
* Try to steal correct value from elsewhere in pipeline
e Otherwise, fall back to stalling or require a delay slot

Tradeoffs?

29

More Hazards

inst

mem

data

> mem

/_I_\
Tt

beqrl, r2, L

add r3, rO, r3

sub r5, r4, r6

L:orr3,r2,r4

30

More Hazards

inst

mem

data

> mem

/_I_\
Tt

beqrl, r2, L

add r3, rO, r3

sub r5, r4, r6

L:orr3,r2,r4

31

Control Hazards

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* ji.e. next PCis not known until 2 cycles after branch/jump

Delay Slot

* |SA says N instructions after branch/jump always executed
— MIPS has 1 branch delay slot

Stall (+ Zap)
e prevent PC update

* clear IF/ID pipeline register
— instruction just fetched might be wrong one, so convert to nop

 allow branch to continue into EX stage

32

Delay Slot

PC .
7'}

<—

€< decide
€ branc
€

data
mem

beqrl, r2, L

orir2, r0, 1

L:orr3,rl, rd

v

33

Control Hazards: Speculative Execution

Control Hazards
* instructions are fetched in stage 1 (IF)
* branch and jump decisions occur in stage 3 (EX)
* i.e. next PC not known until 2 cycles after branch/jump

Stall
Delay Slot

Speculative Execution

* Guess direction of the branch
— Allow instructions to move through pipeline
— Zap them later if wrong guess

e Useful for long pipelines

34

Loops

Branch Prediction

Pipelining: What Could Possibly Go
Wrong?

Data hazards
* register file reads occur in stage 2 (IF)
* register file writes occur in stage 5 (WB)
* next instructions may read values soon to be written

Control hazards
e branch instruction may change the PC in stage 3 (EX)
* next instructions have already started executing

Structural hazards
* resource contention
* so far: impossible because of ISA and pipeline design

37

