
Hakim Weatherspoon
CS 3410, Spring 2012

Computer Science
Cornell University

CPU Performance
Pipelined CPU

See P&H Chapters 1.4 and 4.5

2

“In a major matter, no details are small”
French Proverb

3

Big Picture: Building a Processor

PC

imm

memory

memory

din dout

addr

target

offset cmp control

=?

new

pc

register
file

inst

extend

+4 +4

A Single cycle processor

alu

4

MIPS instruction formats

All MIPS instructions are 32 bits long, has 3 formats

R-type

I-type

J-type

op rs rt rd shamt func

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt immediate

6 bits 5 bits 5 bits 16 bits

op immediate (target address)

6 bits 26 bits

5

MIPS Instruction Types
Arithmetic/Logical

• R-type: result and two source registers, shift amount

• I-type: 16-bit immediate with sign/zero extension

Memory Access
• load/store between registers and memory

• word, half-word and byte operations

Control flow
• conditional branches: pc-relative addresses

• jumps: fixed offsets, register absolute

6

Goals for today

Review

• Remaining Branch Instructions

Performance

• CPI (Cycles Per Instruction)

• MIPS (Instructions Per Cycle)

• Clock Frequency

Pipelining

• Latency vs throuput

7

Memory Layout and

A Simple CPU: remaining branch instructions

8

Memory Layout
Examples (big/little endian):

r5 contains 5 (0x00000005)

 sb r5, 2(r0)
lb r6, 2(r0)

 sw r5, 8(r0)
lb r7, 8(r0)
lb r8, 11(r0)

0x00000000

0x00000001

0x00000002

0x00000003

0x00000004

0x00000005

0x00000006

0x00000007

0x00000008

0x00000009

0x0000000a

0x0000000b

...

0xffffffff

9

Endianness

Endianness: Ordering of bytes within a memory word

1000 1001 1002 1003

0x12345678

Big Endian = most significant part first (MIPS, networks)

Little Endian = least significant part first (MIPS, x86)

as 4 bytes

as 2 halfwords

as 1 word

1000 1001 1002 1003

0x12345678

as 4 bytes

as 2 halfwords

as 1 word

10

Control Flow: Jump Register

op rs - - - func

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

00000000011000000000000000001000

op func mnemonic description

0x0 0x08 JR rs PC = R[rs]

R-Type

11

Jump Register

+4

||
tgt

Data

Mem

addr

ext

5 5 5

Reg.
File

PC

Prog.
Mem

ALU
inst

control

imm

op func mnemonic description

0x0 0x08 JR rs PC = R[rs]

12

Examples (2)

jump to 0xabcd1234

assume 0 <= r3 <= 1

if (r3 == 0) jump to 0xdecafe00

else jump to 0xabcd1234

13

Control Flow: Branches

op mnemonic description

0x4 BEQ rs, rd, offset if R[rs] == R[rd] then PC = PC+4 + (offset<<2)

0x5 BNE rs, rd, offset if R[rs] != R[rd] then PC = PC+4 + (offset<<2)

op rs rd offset

6 bits 5 bits 5 bits 16 bits

00010000101000010000000000000011

signed
offsets

I-Type

14

Examples (3)

if (i == j) { i = i * 4; }

else { j = i - j; }

15

Absolute Jump

tgt

+4

||

Data

Mem

addr

ext

5 5 5

Reg.
File

PC

Prog.
Mem

ALU
inst

control

imm

offset

+

Could have
used ALU for
branch add

=?

Could have
used ALU for
branch cmp

op mnemonic description

0x4 BEQ rs, rd, offset if R[rs] == R[rd] then PC = PC+4 + (offset<<2)

0x5 BNE rs, rd, offset if R[rs] != R[rd] then PC = PC+4 + (offset<<2)

16

Control Flow: More Branches

op rs subop offset

6 bits 5 bits 5 bits 16 bits

00000100101000010000000000000010

signed
offsets

almost I-Type

op subop mnemonic description

0x1 0x0 BLTZ rs, offset if R[rs] < 0 then PC = PC+4+ (offset<<2)

0x1 0x1 BGEZ rs, offset if R[rs] ≥ 0 then PC = PC+4+ (offset<<2)

0x6 0x0 BLEZ rs, offset if R[rs] ≤ 0 then PC = PC+4+ (offset<<2)

0x7 0x0 BGTZ rs, offset if R[rs] > 0 then PC = PC+4+ (offset<<2)

Conditional Jumps (cont.)

17

Absolute Jump

tgt

+4

||

Data

Mem

addr

ext

5 5 5

Reg.
File

PC

Prog.
Mem

ALU
inst

control

imm

offset

+

Could have
used ALU for
branch cmp

=?

cmp

op subop mnemonic description

0x1 0x0 BLTZ rs, offset if R[rs] < 0 then PC = PC+4+ (offset<<2)

0x1 0x1 BGEZ rs, offset if R[rs] ≥ 0 then PC = PC+4+ (offset<<2)

0x6 0x0 BLEZ rs, offset if R[rs] ≤ 0 then PC = PC+4+ (offset<<2)

0x7 0x0 BGTZ rs, offset if R[rs] > 0 then PC = PC+4+ (offset<<2)

18

Control Flow: Jump and Link

op mnemonic description

0x3 JAL target r31 = PC+8 (+8 due to branch delay slot)
PC = (PC+4)31..28 || (target << 2)

op immediate

6 bits 26 bits

00001100000001001000011000000010

J-Type

Function/procedure calls

op mnemonic description

0x2 J target PC = (PC+4)31..28 || (target << 2)

19

Absolute Jump

tgt

+4

||

Data

Mem

addr

ext

5 5 5

Reg.
File

PC

Prog.
Mem

ALU
inst

control

imm

offset

+

=?

cmp

Could have
used ALU for

link add

+4

op mnemonic description

0x3 JAL target r31 = PC+8 (+8 due to branch delay slot)
PC = (PC+4)31..28 || (target << 2)

20

Performance

See: P&H 1.4

21

What is instruction is the longest

A) LW

B) SW

C) ADD/SUB/AND/OR/etc

D) BEQ

E) J

22

Design Goals
What to look for in a computer system?
•Correctness?

•Cost
–purchase cost = f(silicon size = gate count, economics)

–operating cost = f(energy, cooling)

–operating cost >= purchase cost

•Efficiency
–power = f(transistor usage, voltage, wire size, clock rate, …)

–heat = f(power)
• Intel Core i7 Bloomfield: 130 Watts

•AMD Turion: 35 Watts

• Intel Core 2 Solo: 5.5 Watts

•Cortex-A9 Dual Core @800MHz: 0.4 Watts

•Performance

•Other: availability, size, greenness, features, …

23

Performance
How to measure performance?

• GHz (billions of cycles per second)

• MIPS (millions of instructions per second)

• MFLOPS (millions of floating point operations per
second)

• Benchmarks (SPEC, TPC, …)

Metrics

• latency: how long to finish my program

• throughput: how much work finished per unit time

24

How Fast?

ALU

PC

Prog.
Mem

control
new
pc

Reg.
File

~ 3 gates

All signals are stable

• 80 gates => clock period of at least 160 ns, max
frequency ~6MHz

Better:

• 21 gates => clock period of at least 42 ns, max
frequency ~24MHz

Assumptions:
• alu: 32 bit ripple carry + some muxes
• next PC: 30 bit ripple carry
• control: minimized for delay (~3 gates)
• transistors: 2 ns per gate
• prog,. memory: 16 ns (as much as 8 gates)
• register file: 2 ns access
• ignore wires, register setup time

Better:
• alu: 32 bit carry lookahead + some muxes (~ 9 gates)
• next PC: 30 bit carry lookahead (~ 6 gates)

Better Still:
• next PC: cheapest adder faster than 21 gate delays

25

Adder Performance
32 Bit Adder Design Space Time

Ripple Carry ≈ 300 gates ≈ 64 gate delays

2-Way Carry-Skip ≈ 360 gates ≈ 35 gate delays

3-Way Carry-Skip ≈ 500 gates ≈ 22 gate delays

4-Way Carry-Skip ≈ 600 gates ≈ 18 gate delays

2-Way Look-Ahead ≈ 550 gates ≈ 16 gate delays

Split Look-Ahead ≈ 800 gates ≈ 10 gate delays

Full Look-Ahead ≈ 1200 gates ≈ 5 gate delays

26

Optimization: Summary

Critical Path

• Longest path from a register output to a register input

• Determines minimum cycle, maximum clock frequency

Strategy 1 (we just employed)

• Optimize for delay on the critical path

• Optimize for size / power / simplicity elsewhere

– next PC

27

 Processor Clock Cycle

alu

PC

imm

memory

memory

din dout

addr

target

offset cmp control

=?

extend

new

pc

register
file

op mnemonic description

0x20 LB rd, offset(rs) R[rd] = sign_ext(Mem[offset+R[rs]])

0x23 LW rd, offset(rs) R[rd] = Mem[offset+R[rs]]

0x28 SB rd, offset(rs) Mem[offset+R[rs]] = R[rd]

0x2b SW rd, offset(rs) Mem[offset+R[rs]] = R[rd]

28

 Processor Clock Cycle

alu

PC

imm

memory

memory

din dout

addr

target

offset cmp control

=?

extend

new

pc

register
file

op func mnemonic description

0x0 0x08 JR rs PC = R[rs]

op mnemonic description

0x2 J target PC = (PC+4)31..28 || (target << 2)

29

Multi-Cycle Instructions
Strategy 2

• Multiple cycles to complete a single instruction

E.g: Assume:

• load/store: 100 ns

• arithmetic: 50 ns

• branches: 33 ns

Multi-Cycle CPU

 30 MHz (33 ns cycle) with
– 3 cycles per load/store

– 2 cycles per arithmetic

– 1 cycle per branch

Faster than Single-Cycle CPU?

 10 MHz (100 ns cycle) with

– 1 cycle per instruction

30

CPI
Instruction mix for some program P, assume:

• 25% load/store (3 cycles / instruction)

• 60% arithmetic (2 cycles / instruction)

• 15% branches (1 cycle / instruction)

Multi-Cycle performance for program P:

 3 * .25 + 2 * .60 + 1 * .15 = 2.1

 average cycles per instruction (CPI) = 2.1

Multi-Cycle @ 30 MHz
Single-Cycle @ 10 MHz
Single-Cycle @ 15 MHz

800 MHz PIII “faster” than 1 GHz P4

31

Example
Goal: Make Multi-Cycle @ 30 MHz CPU (15MIPS) run

2x faster by making arithmetic instructions faster

Instruction mix (for P):
• 25% load/store, CPI = 3
• 60% arithmetic, CPI = 2
• 15% branches, CPI = 1

32

Administrivia

Required: partner for group project

Project1 (PA1) and Homework2 (HW2) are both out

PA1 Design Doc and HW2 due in one week, start early

Work alone on HW2, but in group for PA1

Save your work!
• Save often. Verify file is non-zero. Periodically save to Dropbox,

email.

• Beware of MacOSX 10.5 (leopard) and 10.6 (snow-leopard)

Use your resources
• Lab Section, Piazza.com, Office Hours, Homework Help Session,

• Class notes, book, Sections, CSUGLab

33

Administrivia

Check online syllabus/schedule

• http://www.cs.cornell.edu/Courses/CS3410/2012sp/schedule.html

Slides and Reading for lectures

Office Hours

Homework and Programming Assignments

Prelims (in evenings):
• Tuesday, February 28th

• Thursday, March 29th

• Thursday, April 26th

Schedule is subject to change

34

Collaboration, Late, Re-grading Policies

“Black Board” Collaboration Policy
• Can discuss approach together on a “black board”
• Leave and write up solution independently
• Do not copy solutions

Late Policy
• Each person has a total of four “slip days”
• Max of two slip days for any individual assignment
• Slip days deducted first for any late assignment,
 cannot selectively apply slip days
• For projects, slip days are deducted from all partners
• 20% deducted per day late after slip days are exhausted

Regrade policy
• Submit written request to lead TA,
 and lead TA will pick a different grader
• Submit another written request,
 lead TA will regrade directly
• Submit yet another written request for professor to regrade.

35

Amdahl’s Law

Amdahl’s Law
Execution time after improvement =

Or:

 Speedup is limited by popularity of improved feature

Corollary:

 Make the common case fast

Caveat:

 Law of diminishing returns

execution time affected by improvement

amount of improvement
+ execution time unaffected

36

Pipelining

See: P&H Chapter 4.5

37

The Kids
Alice

Bob

They don’t always get along…

38

The Bicycle

39

The Materials

Saw Drill

Glue Paint

40

The Instructions
N pieces, each built following same sequence:

Saw Drill Glue Paint

41

Design 1: Sequential Schedule

Alice owns the room

Bob can enter when Alice is finished

Repeat for remaining tasks

No possibility for conflicts

42

Elapsed Time for Alice: 4
Elapsed Time for Bob: 4
Total elapsed time: 4*N
Can we do better?

Sequential Performance
time
1 2 3 4 5 6 7 8 …

Latency:
Throughput:
Concurrency:

43

Design 2: Pipelined Design
Partition room into stages of a pipeline

One person owns a stage at a time

4 stages

4 people working simultaneously

Everyone moves right in lockstep

Alice Bob Carol Dave

44

Pipelined Performance time
1 2 3 4 5 6 7…

Latency:
Throughput:
Concurrency:

45

Pipeline Hazards

0h 1h 2h 3h…

Q: What if glue step of task 3 depends on output of task 1?

Latency:
Throughput:
Concurrency:

46

Lessons

Principle:

 Throughput increased by parallel execution

Pipelining:
• Identify pipeline stages

• Isolate stages from each other

• Resolve pipeline hazards (next week)

47

A Processor

alu

PC

imm

memory

memory

din dout

addr

target

offset cmp control

=?

new

pc

register
file

inst

extend

+4 +4

48

Write-
Back Memory

Instruction
Fetch Execute

Instruction
Decode

register
file

control

A Processor

alu

imm

memory

din dout

addr

inst

PC

memory

compute
jump/branch

targets

new

pc

+4

extend

49

Basic Pipeline

Five stage “RISC” load-store architecture
1. Instruction fetch (IF)

– get instruction from memory, increment PC

2. Instruction Decode (ID)
– translate opcode into control signals and read registers

3. Execute (EX)
– perform ALU operation, compute jump/branch targets

4. Memory (MEM)
– access memory if needed

5. Writeback (WB)
– update register file

50

Principles of Pipelined Implementation

Break instructions across multiple clock cycles
(five, in this case)

Design a separate stage for the execution
performed during each clock cycle

Add pipeline registers (flip-flops) to isolate signals
between different stages

