
State & Finite State Machines

Hakim Weatherspoon
CS 3410, Spring 2012

Computer Science
Cornell University

See P&H Appendix C.7. C.8, C.10, C.11

2

Big Picture: Building a Processor

PC

imm

memory

memory

din dout

addr

target

offset cmp control

=?

new

pc

register
file

inst

extend

+4 +4

A Single cycle processor

alu

3

Stateful Components

Until now is combinatorial logic
• Output is computed when inputs are present

• System has no internal state

• Nothing computed in the present can depend on what
happened in the past!

Need a way to record data

Need a way to build stateful circuits

Need a state-holding device

Finite State Machines

Inputs Combinational
circuit

Outputs N M

4

How can we store and change values?

(a)

(b)

(c)

B

A

C

Ballots
How do we create

 vote counter

machine

d
et

ec
t

enc

8 3 7
7LED

decode

A B

S
R

Q

Q

(d) All the above

(e) None

5

Unstable Devices
B

A

C

Bistable Devices

• In stable state, A = B

• How do we change the state?

A B

A B

1

A B

1
0 0

A Simple Device

• Stable and unstable equilibria?

SR Latch

• Set-Reset (S-R) Latch

• Stores a value Q and its complement

S

R Q

Q

S R Q Q

0 0

0 1

1 0

1 1

SR Latch

• Set-Reset (S-R) Latch

• Stores a value Q and its complement

• S=1 and R=1 ?

S

R Q

Q

S R Q Q

0 0

0 1

1 0

1 1

SR Latch

• Set-Reset (S-R) Latch

• Stores a value Q and its complement

• S=1 and R=1 ?

S

R Q

Q

S R Q Q

0 0 Q Q

0 1 0 1

1 0 1 0

1 1 ? ?

S

R

Q

Q

(Unclocked) D Latch

• Data (D) Latch
– Easier to use than an SR latch

– No possibility of entering an undefined state

• When D changes, Q changes
 … immediately (…after a delay of 2 Ors and 2 NOTs)

• Need to control when the output changes

D S

R Q

Q

S

R

Q

Q

D

D Q Q

0

1

(Unclocked) D Latch

• Data (D) Latch
– Easier to use than an SR latch

– No possibility of entering an undefined state

• When D changes, Q changes
 … immediately (…after a delay of 2 Ors and 2 NOTs)

• Need to control when the output changes

D S

R Q

Q

S

R

Q

Q

D

D Q Q

0 0 1

1 1 0

Clocks

• Clock helps coordinate state changes

– Usually generated by an oscillating crystal

– Fixed period; frequency = 1/period

1

0

Edge-triggering

• Can design circuits to change on the rising or falling

edge

• Trigger on rising edge = positive edge-triggered

• Trigger on falling edge = negative edge-triggered

• Inputs must be stable just before the triggering edge

input

clock

Clock Disciplines

• Level sensitive

– State changes when clock is high (or low)

• Edge triggered

– State changes at clock edge

positive edge-triggered

negative edge-triggered

15

D Latch with Clock

S

R

D

clk

Q

Q

S R Q Q

0 0 Q Q

0 1 0 1

1 0 1 0

1 1 forbidden

clk D Q Q

0 0 Q Q

0 1 Q Q

1 0 0 1

1 1 1 0

16

D Latch with Clock

S

R

D

clk

Q

Q

clk D Q Q

0 0 Q Q

0 1 Q Q

1 0 0 1

1 1 1 0

clk

D

Q

Level Sensitive D Latch
Clock high:
 set/reset (according to D)
Clock low:
 keep state (ignore D)

17

Edge-Triggered D Flip-Flop
D Flip-Flop
• Edge-Triggered

• Data is captured
when clock is high

• Outputs change only
on falling edges

D Q

Q

D Q

Q L L

clk

D

X

Q

c

X

c

Q

Q

D

clk

18

Registers

Register

• D flip-flops in parallel

• shared clock

• extra clocked inputs:
write_enable, reset, …

clk

D0

D3

D1

D2

4 4
4-bit

reg

19

Clock Methodology

Clock Methodology

• Negative edge, synchronous

– Signals must be stable near falling clock edge

• Positive edge synchronous

• Asynchronous, multiple clocks, . . .

clk

compute save

tsetup thold

compute save compute

tcombinational

20

Metastability and Asynchronous Inputs
Q: What happens if select input changes near clock edge?

A) Multiplexor selects input 0

B) Multiplexor selects input 1

C) Multiplexor chooses either input

D) Unknown

E) None above

A: Google “Buridan’s Principle” by Leslie Lamport

1-bit
reg

Clk

0

1 select

21

An Example: What will this circuit do?

32-bit
reg

Clk

+1

Run

WE R

Reset

Decoder

22

Recap

We can now build interesting devices with sensors

• Using combinatorial logic

We can also store data values

• In state-holding elements

• Coupled with clocks

23

Administrivia

Make sure partner in same Lab Section this week

Lab2 is out

Due in one week, next Monday, start early

Work alone

But, use your resources

• Lab Section, Piazza.com, Office Hours, Homework Help Session,

• Class notes, book, Sections, CSUGLab

No Homework this week

24

Administrivia

Check online syllabus/schedule

• http://www.cs.cornell.edu/Courses/CS3410/2012sp/schedule.html

Slides and Reading for lectures

Office Hours

Homework and Programming Assignments

Prelims (in evenings):
• Tuesday, February 28th

• Thursday, March 29th

• Thursday, April 26th

Schedule is subject to change

25

Collaboration, Late, Re-grading Policies

“Black Board” Collaboration Policy
• Can discuss approach together on a “black board”
• Leave and write up solution independently
• Do not copy solutions

Late Policy
• Each person has a total of four “slip days”
• Max of two slip days for any individual assignment
• Slip days deducted first for any late assignment,
 cannot selectively apply slip days
• For projects, slip days are deducted from all partners
• 20% deducted per day late after slip days are exhausted

Regrade policy
• Submit written request to lead TA,
 and lead TA will pick a different grader
• Submit another written request,
 lead TA will regrade directly
• Submit yet another written request for professor to regrade.

Finite State Machines

27

Revisit Voting Machine

Ballots
How do we create

 a vote counter

machine

d
et

ec
t

enc

8 3 7

7LED

decode

28

Revisit Voting Machine

m
u

x

32

... reg

d
et

ec
t

en
c

3

decoder (3-to-8)

32 32

32

LE
D

 d
ec

3

WE

+1

reg

WE

reg

WE

reg

WE

m
u

x

D

V

29

Finite State Machines

An electronic machine which has

• external inputs

• externally visible outputs

• internal state

Output and next state depend on

• inputs

• current state

30

Abstract Model of FSM

Machine is

 M = (S, I, O, )

S: Finite set of states

I: Finite set of inputs

O: Finite set of outputs

: State transition function

Next state depends on present input and
present state

31

Revisit Voting Machine

m
u

x

32

... reg

d
et

ec
t

en
c

3

decoder (3-to-8)

32 32

32

LE
D

 d
ec

3

WE

+1

reg

WE

reg

WE

reg

WE

m
u

x

32

Automata Model

Finite State Machine

• inputs from external world

• outputs to external world

• internal state

• combinational logic

Next State

Current
State

Input

Output

R
eg

is
te

rs

Comb.
Logic

33

FSM Example

Legend

state

input/output

start
state

A B

C D

down/on
up/off down/on

down/off

up/off

down/off

up/off up/off

Input: up or down
Output: on or off
States: A, B, C, or D

34

FSM Example

Legend

state

input/output

start
state

A B

C D

down/on
up/off down/on

down/off

up/off

down/off

up/off up/off

Input: = up or = down
Output: = on or = off
States: = A, = B, = C, or = D

35

FSM Example

Legend

S1S0

i0i1i2…/o0o1o2…

S1S0

00 01

10 11

1/1
0/0 1/1

1/0

0/0

1/0

0/0 0/0

Input: 0=up or 1=down
Output: 1=on or 1=off
States: 00=A, 01=B, 10=C, or 11=D

36

General Case: Mealy Machine

 Outputs and next state depend on both
current state and input

Mealy Machine

Next State

Current
State

Input

Output
R

eg
is

te
rs

Comb.
Logic

37

Moore Machine

Special Case: Moore Machine

 Outputs depend only on current state

Next State

Current
State

Input

Output
R

eg
is

te
rs

 Comb.
Logic

Comb.
Logic

38

Moore Machine Example

Legend

state
out

input

start
out

A
off

B
on

C
off

D
on

down
up down

down

up

down

up up

Input: up or down
Output: on or off
States: A, B, C, or D

39

Example: Digital Door Lock

Digital Door Lock

Inputs:

• keycodes from keypad

• clock

Outputs:

• “unlock” signal

• display how many keys pressed so far

40

Door Lock: Inputs

Assumptions:

• signals are synchronized to clock

• Password is B-A-B

K
A
B

K A B Meaning

0 0 0 Ø (no key)

1 1 0 ‘A’ pressed

1 0 1 ‘B’ pressed

41

Door Lock: Outputs

Assumptions:

• High pulse on U unlocks door

U
D3D2D1D0

4 LED
dec

8

42

Door Lock: Simplified State Diagram

Idle

G1

”0”

Ø

G2 G3

B1 B2

”1” ”2” ”3”, U

”1” ”2”

Ø Ø

Ø Ø

“B”

“A” “B”

else

else

any

any else else

B3
”3”

else

43

Door Lock: Simplified State Diagram

Idle

G1

”0”

Ø

G2 G3

B1 B2

”1” ”2” ”3”, U

”1” ”2”

Ø Ø

Ø Ø

“B”

“A” “B”

else

else

else

any else else

44

Door Lock: Simplified State Diagram

Idle

G1

”0”

Ø

G2 G3

B1 B2

”1” ”2” ”3”, U

”1” ”2”

Ø Ø

Ø Ø

“B”

“A” “B”

else

else

else

any else else
Cur.

State
Output

Cur.
State

Output

45

Door Lock: Simplified State Diagram

Idle

G1

”0”

Ø

G2 G3

B1 B2

”1” ”2” ”3”, U

”1” ”2”

Ø Ø

Ø Ø

“B”

“A” “B”

else

else

else

any else else
Cur.

State
Output

Cur.
State

Output

Idle “0”
G1 “1”
G2 “2”
G3 “3”, U
B1 “1”
B2 “2”

46

Door Lock: Simplified State Diagram

Idle

G1

”0”

Ø

G2 G3

B1 B2

”1” ”2” ”3”, U

”1” ”2”

Ø Ø

Ø Ø

“B”

“A” “B”

else

else

else

any else else

Cur. State Input Next State Cur. State Input Next State

47

Door Lock: Simplified State Diagram

Idle

G1

”0”

Ø

G2 G3

B1 B2

”1” ”2” ”3”, U

”1” ”2”

Ø Ø

Ø Ø

“B”

“A” “B”

else

else

else

any else else

Cur. State Input Next State Cur. State Input Next State

Idle Ø Idle

Idle “B” G1

Idle “A” B1

G1 Ø G1

G1 “A” G2

G1 “B” B2

G2 Ø B2

G2 “B” G3

G2 “A” Idle

G3 any Idle

B1 Ø B1

B1 K B2

B2 Ø B2

B2 K Idle

48

Cur. State Input Next State

Idle Ø Idle

Idle “B” G1

Idle “A” B1

G1 Ø G1

G1 “A” G2

G1 “B” B2

G2 Ø B2

G2 “B” G3

G2 “A” Idle

G3 any Idle

B1 Ø B1

B1 K B2

B2 Ø B2

B2 K Idle

State Table Encoding
Cur. State Output

Idle “0”

G1 “1”

G2 “2”

G3 “3”, U

B1 “1”

B2 “2”

U
D3D2D1D0

4
dec

8

D3 D2 D1 D0 U

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 0 0 1 0

0 0 1 0 0

R
P
Q

K A B Meaning

0 0 0 Ø (no key)

1 1 0 ‘A’ pressed

1 0 1 ‘B’ pressed

K A B

0 0 0

1 0 1

1 1 0

0 0 0

1 1 0

1 0 1

0 0 0

1 0 1

1 1 0

x x x

0 0 0

1 x x

0 0 0

1 x x

S2 S1 S0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

State S2 S1 S0

Idle 0 0 0

G1 0 0 1

G2 0 1 0

G3 0 1 1

B1 1 0 0

B2 1 0 1

S2 S1 S0 S’2 S’1 S’0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 1

0 0 1 0 1 0

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 0 1 1

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 1 0 1

1 0 1 1 0 1

1 0 1 0 0 0

49

Door Lock: Implementation

4

d
e

c

3bit
Reg

clk

U

D3-0 S2-0

S’2-0

S2-0

A
B

C

Strategy:
(1) Draw a state diagram (e.g. Moore Machine)
(2) Write output and next-state tables
(3) Encode states, inputs, and outputs as bits
(4) Determine logic equations for next state and outputs

50

Summary

We can now build interesting devices with sensors

• Using combinational logic

We can also store data values

• Stateful circuit elements (D Flip Flops, Registers, …)

• Clock to synchronize state changes

• But be wary of asynchronous (un-clocked) inputs

• State Machines or Ad-Hoc Circuits

