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Big Picture:  Building a Processor 
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Stateful Components 

Until now is combinatorial logic 
• Output is computed when inputs are present 

• System has no internal state 

• Nothing computed in the present can depend on what 
happened in the past! 

 

 
 

Need a way to record data 

Need a way to build stateful circuits 

Need a state-holding device 
 

Finite State Machines 

Inputs Combinational 
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How can we store and change values? 

(a) 

 

 

(b) 

 

(c)   
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(d) All the above 

 

 

(e) None 
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Unstable Devices 
B 

A 
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Bistable Devices 

• In stable state, A = B 

 

 

 

 

• How do we change the state? 

A B 

A B 

1 

A B 

1 
0 0 

A Simple Device 

• Stable and unstable equilibria? 



SR Latch 

• Set-Reset (S-R) Latch 

• Stores a value Q and its complement 
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SR Latch 

• Set-Reset (S-R) Latch 

• Stores a value Q and its complement 

 

• S=1 and R=1 ? 
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SR Latch 

• Set-Reset (S-R) Latch 

• Stores a value Q and its complement 

 

• S=1 and R=1 ? 
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(Unclocked) D Latch 

• Data (D) Latch 
– Easier to use than an SR latch 

– No possibility of entering an undefined state 

 

• When D changes, Q changes 
 … immediately (…after a delay of 2 Ors and 2 NOTs) 

 

• Need to control when the output changes 
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(Unclocked) D Latch 

• Data (D) Latch 
– Easier to use than an SR latch 

– No possibility of entering an undefined state 

 

• When D changes, Q changes 
 … immediately (…after a delay of 2 Ors and 2 NOTs) 

 

• Need to control when the output changes 
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Clocks 

• Clock helps coordinate state changes 

– Usually generated by an oscillating crystal 

– Fixed period; frequency = 1/period 

1 

0 



Edge-triggering 

• Can design circuits to change on the rising or falling 

edge 

 

• Trigger on rising edge = positive edge-triggered 

 

• Trigger on falling edge = negative edge-triggered 

 

• Inputs must be stable just before the triggering edge 

input 

clock 



Clock Disciplines 

• Level sensitive 

– State changes when clock is high (or low) 

• Edge triggered 

– State changes at clock edge 

positive edge-triggered 

negative edge-triggered 
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D Latch with Clock 
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D Latch with Clock 
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Level Sensitive D Latch 
Clock high: 
   set/reset (according to D) 
Clock low: 
   keep state (ignore D) 
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Edge-Triggered D Flip-Flop 
D Flip-Flop 
• Edge-Triggered 

• Data is captured 
when clock is high 

• Outputs change only 
on falling edges 
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Registers 

Register 

• D flip-flops in parallel  

• shared clock 

• extra clocked inputs: 
write_enable, reset, … 

clk 

D0 

D3 

D1 

D2 

4 4 
4-bit 

reg 
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Clock Methodology 

Clock Methodology 

• Negative edge, synchronous 

 

 

 
– Signals must be stable near falling clock edge 

 

• Positive edge synchronous 

• Asynchronous,  multiple clocks, . . . 

clk 

compute save 

tsetup thold 

compute save compute 

tcombinational 
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Metastability and Asynchronous Inputs 
Q: What happens if select input changes near clock edge? 

A) Multiplexor selects input 0 

B) Multiplexor selects input 1 

C) Multiplexor chooses either input 

D) Unknown 

E) None above 

 

A: Google “Buridan’s Principle” by Leslie Lamport 

 
1-bit 
reg 

Clk 

0 

1 select 
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An Example: What will this circuit do? 

32-bit 
reg 

Clk 

+1 

Run 

WE R 

Reset 

Decoder 
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Recap 

We can now build interesting devices with sensors 

• Using combinatorial logic 

 

We can also store data values 

• In state-holding elements 

• Coupled with clocks 
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Administrivia 

Make sure partner in same Lab Section this week 

 

Lab2 is out 

Due in one week, next Monday, start early 

Work alone 

But, use your resources 

• Lab Section, Piazza.com, Office Hours,  Homework Help Session, 

• Class notes, book, Sections, CSUGLab 

 

No Homework this week 
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Administrivia 

Check online syllabus/schedule  

• http://www.cs.cornell.edu/Courses/CS3410/2012sp/schedule.html 

Slides and Reading for lectures 

Office Hours 

Homework and Programming Assignments 

Prelims (in evenings):  
• Tuesday, February 28th  

• Thursday, March 29th  

• Thursday, April 26th  

 

Schedule is subject to change 
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Collaboration, Late, Re-grading Policies 

“Black Board” Collaboration Policy 
• Can discuss approach together on a “black board” 
• Leave and write up solution independently 
• Do not copy solutions 

 

Late Policy 
• Each person has a total of four “slip days” 
• Max of two slip days for any individual assignment 
• Slip days deducted first for any late assignment,  
    cannot selectively apply slip days 
• For projects, slip days are deducted from all partners  
• 20% deducted per day late after slip days are exhausted 

 

Regrade policy 
• Submit written request to lead TA,  
 and lead TA will pick a different grader  
• Submit another written request,  
 lead TA will regrade directly  
• Submit yet another written request for professor to regrade. 

 

 



Finite State Machines 
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Revisit Voting Machine 
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Revisit Voting Machine 
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Finite State Machines 

An electronic machine which has 

• external inputs 

• externally visible outputs 

• internal state 

 

Output and next state depend on 

• inputs 

• current state 
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Abstract Model of FSM 

Machine is 

   M = (  S,  I,  O,  ) 

S: Finite set of states 

I:  Finite set of inputs 

O: Finite set of outputs 

:  State transition function 

Next state depends on present input and 
present state 
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Revisit Voting Machine 
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Automata Model 

Finite State Machine 
 

 

 

 

 

 

• inputs from external world 

• outputs to external world 

• internal state 

• combinational logic  
 

 

Next State 

Current 
State 

Input 

Output 

R
eg

is
te

rs
 

Comb. 
Logic 



33 

FSM Example 

Legend 

state 

input/output 

start 
state 

A B 

C D 

down/on 
up/off down/on 

down/off 

up/off 

down/off 

up/off up/off 

Input: up or down 
Output: on or off 
States: A, B, C, or D 
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FSM Example 

Legend 

state 

input/output 

start 
state 

A B 

C D 

down/on 
up/off down/on 

down/off 

up/off 

down/off 

up/off up/off 

Input:  = up or  = down 
Output:  = on or  = off 
States:  = A,  = B,  = C, or  = D 
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FSM Example 

Legend 

S1S0 

i0i1i2…/o0o1o2… 

S1S0 

00 01 

10 11 

1/1 
0/0 1/1 

1/0 

0/0 

1/0 

0/0 0/0 

Input: 0=up or 1=down 
Output: 1=on or 1=off 
States: 00=A, 01=B, 10=C, or 11=D 
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General Case: Mealy Machine 

 

 

 

 

 

 

 

 Outputs and next state depend on both 
current state and input 

Mealy Machine 

Next State  

Current 
State 

Input 

Output 
R

eg
is

te
rs

 
Comb. 
Logic 



37 

Moore Machine 
 

Special Case: Moore Machine 

 

 

 

 

 

 

 Outputs depend only on current state 
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Moore Machine Example 

Legend 

state 
out 

input 

start
out 

A 
off 

B 
on 

C 
off 

D 
on 

down 
up down 

down 

up 

down 

up up 

Input: up or down 
Output: on or off 
States: A, B, C, or D 
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Example: Digital Door Lock 

Digital Door Lock 

Inputs:  

• keycodes from keypad 

• clock 

Outputs:  

• “unlock” signal 

• display how many keys pressed so far 
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Door Lock: Inputs 

Assumptions: 

• signals are synchronized to clock 

• Password is B-A-B 

K 
A 
B 

K A B Meaning 

0 0 0 Ø  (no key) 

1 1 0 ‘A’ pressed 

1 0 1 ‘B’ pressed 
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Door Lock: Outputs 

Assumptions: 

• High pulse on U unlocks door 

U 
D3D2D1D0 

4 LED 
dec 

8 
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Door Lock: Simplified State Diagram 

Idle 
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else 
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Door Lock: Simplified State Diagram 
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Door Lock: Simplified State Diagram 
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Door Lock: Simplified State Diagram 

Idle 

G1 

”0” 

Ø 

G2 G3 

B1 B2 

”1” ”2” ”3”, U 

”1” ”2” 

Ø Ø 

Ø Ø 

“B” 

“A” “B” 

else 

else 

else 

any else else 
Cur. 

State 
Output 

Cur. 
State 

Output 

Idle “0” 
G1 “1” 
G2 “2” 
G3 “3”, U 
B1 “1” 
B2 “2” 



46 

Door Lock: Simplified State Diagram 
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Door Lock: Simplified State Diagram 
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Cur. State Input Next State 

Idle Ø Idle 

Idle “B” G1 

Idle “A” B1 

G1 Ø G1 

G1 “A” G2 

G1 “B” B2 

G2 Ø B2 

G2 “B” G3 

G2 “A” Idle 

G3 any Idle 

B1 Ø B1 

B1 K B2 

B2 Ø B2 

B2 K Idle 

State Table Encoding 
Cur. State Output 

Idle “0” 

G1 “1” 

G2 “2” 

G3 “3”, U 

B1 “1” 

B2 “2” 

U 
D3D2D1D0 

4 
dec 

8 

D3 D2 D1 D0 U 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 1 

0 0 0 1 0 

0 0 1 0 0 

R 
P 
Q 

K A B Meaning 

0 0 0 Ø (no key) 

1 1 0 ‘A’ pressed 

1 0 1 ‘B’ pressed 

K A B 

0 0 0 

1 0 1 

1 1 0 

0 0 0 

1 1 0 

1 0 1 

0 0 0 

1 0 1 

1 1 0 

x x x 

0 0 0 

1 x x 

0 0 0 

1 x x 

S2 S1 S0 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

State S2 S1 S0 

Idle 0 0 0 

G1 0 0 1 

G2 0 1 0 

G3 0 1 1 

B1 1 0 0 

B2 1 0 1 

S2 S1 S0 S’2 S’1 S’0 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 1 0 0 

0 0 1 0 0 1 

0 0 1 0 1 0 

0 0 1 1 0 1 

0 1 0 0 1 0 

0 1 0 0 1 1 

0 1 0 0 0 0 

0 1 1 0 0 0 

1 0 0 1 0 0 

1 0 0 1 0 1 

1 0 1 1 0 1 

1 0 1 0 0 0 
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Door Lock: Implementation 
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Strategy: 
(1) Draw a state diagram (e.g. Moore Machine) 
(2) Write output and next-state tables 
(3) Encode states, inputs, and outputs as bits 
(4) Determine logic equations for next state and outputs 
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Summary 

We can now build interesting devices with sensors 

• Using combinational logic 

 

We can also store data values 

• Stateful circuit elements (D Flip Flops, Registers, …) 

• Clock to synchronize state changes 

• But be wary of asynchronous (un-clocked) inputs 

• State Machines or Ad-Hoc Circuits 


