
Arithmetic

Hakim Weatherspoon
CS 3410, Spring 2012

Computer Science
Cornell University

See P&H 2.4 (signed), 2.5, 2.6, C.6, and Appendix C.6

2

Goals for today

Binary (Arithmetic) Operations

• One-bit and four-bit adders

• Negative numbers and two’s compliment

• Addition (two’s compliment)

• Subtraction (two’s compliment)

• Performance

3

Binary Addition

Addition works the same way
regardless of base

• Add the digits in each position

• Propagate the carry

Unsigned binary addition is pretty
easy

• Combine two bits at a time

• Along with a carry

 183
+ 254

 001110

+ 011100

4

1-bit Adder

Half Adder

• Adds two 1-bit numbers

• Computes 1-bit result
and 1-bit carry

A B

R

C

5

1-bit Adder with Carry

Full Adder

• Adds three 1-bit numbers

• Computes 1-bit result
and 1-bit carry

• Can be cascaded

A B

R

Cout Cin

6

4-bit Adder

4-Bit Full Adder

• Adds two 4-bit numbers
and carry in

• Computes 4-bit result
and carry out

• Can be cascaded

A[4] B[4]

R[4]

Cout Cin

7

4-bit Adder

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

• Carry-out = overflow indicates result does not
fit in 4 bits

A0 B0

R0

A1 B1

R1

A2 B2

R2

A3 B3

R3

Cout Cin

8

Arithmetic with Negative Numbers

Negative Numbers Complicate Arithmetic
Recall addition with negatives:

9

Arithmetic with Negative Numbers

Negative Numbers Complicate Arithmetic
Recall addition with negatives:

• pos + pos add magnitudes, result positive

• neg + neg add magnitudes, result negative

• pos + neg subtract smaller magnitude,
 keep sign of bigger magnitude

10

First Attempt: Sign/Magnitude

Representation

First Attempt: Sign/Magnitude Representation

• 1 bit for sign (0=positive, 1=negative)

• N-1 bits for magnitude

11

Two’s Complement Representation

Better: Two’s Complement Representation

• Leading 1’s for negative numbers

• To negate any number:

– complement all the bits

– then add 1

12

Two’s Complement

Non-negatives
(as usual):

 +0 = 0000
 +1 = 0001
 +2 = 0010
 +3 = 0011
 +4 = 0100
 +5 = 0101
 +6 = 0110
 +7 = 0111
 +8 = 1000

Negatives
(two’s complement: flip then add 1):

13

Two’s Complement

Non-negatives
(as usual):

 +0 = 0000
 +1 = 0001
 +2 = 0010
 +3 = 0011
 +4 = 0100
 +5 = 0101
 +6 = 0110
 +7 = 0111
 +8 = 1000

Negatives
(two’s complement: flip then add 1):

 ~0 = 1111 -0 = 0000
 ~1 = 1110 -1 = 1111
 ~2 = 1101 -2 = 1110
 ~3 = 1100 -3 = 1101
 ~4 = 1011 -4 = 1100
 ~5 = 1010 -5 = 1011
 ~3 = 1001 -6 = 1010
 ~7 = 1000 -7 = 1001
 ~8 = 0111 -8 = 1000

14

Two’s Complement Facts

Signed two’s complement
• Negative numbers have leading 1’s

• zero is unique: +0 = - 0

• wraps from largest positive to largest negative

N bits can be used to represent
• unsigned:

– eg: 8 bits

• signed (two’s complement):
– ex: 8 bits

15

Sign Extension & Truncation

Extending to larger size

Truncate to smaller size

16

Two’s Complement Addition

Addition with two’s complement signed numbers

• Perform addition as usual, regardless of sign
(it just works)

17

Two’s Complement Addition

Addition with two’s complement signed numbers

• Perform addition as usual, regardless of sign
(it just works)

A0 B0

R0

A1 B1

R1

A2 B2

R2

A3 B3

R3

Cout

18

Overflow

Overflow
• adding a negative and a positive?

• adding two positives?

• adding two negatives?

19

Overflow

Overflow
• adding a negative and a positive?

• adding two positives?

• adding two negatives?

Rule of thumb:

 Overflow happened iff
 carry into msb != carry out of msb

20

Two’s Complement Adder

Two’s Complement Adder with overflow detection

A0 B0

R0

A1 B1

R1

A2 B2

R2

A3 B3

R3

over

flow

0

21

Binary Subtraction

Two’s Complement Subtraction

22

Binary Subtraction

Two’s Complement Subtraction

 A – B = A + (-B) = A + (B + 1)

R0 R1 R2 R3

over

flow

1

A0

B0

A1

B1

A2

B2

A3

B3

Q: What if (-B) overflows?

23

A Calculator

d
ec

o
d

er

8

8

S
0=add
1=sub

A

B
8

24

A Calculator

ad
d

er

m
u

x d
e

co
d

er

8

8
8

8

8

S

A

B
8

0=add
1=sub

25

• Is this design fast enough?

• Can we generalize to 32 bits? 64? more?

Efficiency and Generality

A0 B0

R0

A1 B1

R1

A2 B2

R2

A3 B3

R3

C0

26

Performance

Speed of a circuit is affected by the number of
gates in series (on the critical path or the
deepest level of logic)

Combinational
Logic

tcombinational

in
p

u
ts

ar

ri
ve

o
u

tp
u

ts

ex
p

ec
te

d

27

4-bit Ripple Carry Adder

A3 B3

R3

C4

A1 B1

R1

A2 B2

R2

A0 B0

C0

R0

C1 C2 C3

• First full adder, 2 gate delay
• Second full adder, 2 gate delay
• …

Carry ripples from lsb to msb

28

Critical Path

Which operation is the critical path?

• A) ADD/SUB

• B) AND

• C) OR

• D) LT

29

Critical Path

What is the length of the critical path (in gates)?

(counting inverters)

• A) 3

• B) 5

• C) 9

• D) 11

30

Critical Path

What is the length of the critical path for a 32-bit
ALU (in gates)? (counting inverters)

• A) 11

• B) 32

• C) 64

• D) 71

31

Recap

We can now implement any combinational
(combinatorial) logic circuit

• Decompose large circuit into manageable blocks

– Encoders, Decoders, Multiplexors, Adders, ...

• Design each block

– Binary encoded numbers for compactness

• Can implement circuits using NAND or NOR gates

• Can implement gates using use P- and N-transistors

• And can add and subtract numbers (in two’s compliment)!

• Next, state and finite state machines…

32

Administrivia

Make sure you are
Registered for class, can access CMS
Have a Section you can go to
Have project partner in same Lab Section

Lab1 and HW1 are out
Both due in one week, next Monday, start early
Work alone
But, use your resources
• Lab Section, Piazza.com, Office Hours, Homework Help Session,
• Class notes, book, Sections, CSUGLab

Homework Help Session
Wednesday and Friday from 3:30-5:30pm
Location: 203 Thurston

33

Administrivia

Check online syllabus/schedule

• http://www.cs.cornell.edu/Courses/CS3410/2012sp/schedule.html

Slides and Reading for lectures

Office Hours

Homework and Programming Assignments

Prelims (in evenings):
• Tuesday, February 28th

• Thursday, March 29th

• Thursday, April 26th

Schedule is subject to change

34

Stateful Components

Until now is combinatorial logic
• Output is computed when inputs are present

• System has no internal state

• Nothing computed in the present can depend on what
happened in the past!

Need a way to record data

Need a way to build stateful circuits

Need a state-holding device

Finite State Machines

Inputs Combinational
circuit

Outputs N M

35

How can we store and change values?

(a)

(b)

(c)

B

A

C

Ballots
How do we create

 vote counter

machine

d
et

ec
t

enc

8 3 7
7LED

decode

A B

S
R

Q

Q

(d) All the above

(e) None

36

Unstable Devices
B

A

C

Bistable Devices

• In stable state, A = B

• How do we change the state?

A B

A B

1

A B

1
0 0

A Simple Device

• Stable and unstable equilibria?

38

SR Latch

Set-Reset (SR) Latch
 Stores a value Q and its complement Q

S R Q Q

0 0

0 1

1 0

1 1

S

R

Q

Q

S

R

Q

Q

39

SR Latch

Set-Reset (SR) Latch
 Stores a value Q and its complement Q

S R Q Q

0 0

0 1

1 0

1 1

S

R

Q

Q

S

R

Q

Q

40

Unclocked D Latch

Data (D) Latch

D Q Q

0

1

S

R

D Q

Q

41

Unclocked D Latch

Data (D) Latch

D Q Q

0 0 1

1 1 0

S

R

D Q

Q

Data Latch
• Easier to use than an SR latch
• No possibility of entering an undefined state

When D changes, Q changes
– … immediately (after a delay of 2 Ors and 2 NOTs)

Need to control when the output changes

42

D Latch with Clock

S

R

D

clk

Q

Q

clk

D

Q

Level Sensitive D Latch
Clock high:
 set/reset (according to D)
Clock low:
 keep state (ignore D)

43

D Latch with Clock

S

R

D

clk

Q

Q

S R Q Q

0 0 Q Q

0 1 0 1

1 0 1 0

1 1 forbidden

D Q Q

0 0 1

1 1 0

clk D Q Q

0 0 Q Q

0 1 Q Q

1 0 0 1

1 1 1 0

44

D Latch with Clock

S

R

D

clk

Q

Q

D Q Q

0 0 1

1 1 0

clk D Q Q

0 0 Q Q

0 1 Q Q

1 0 0 1

1 1 1 0

clk

D

Q

45

Clocks

Clock helps coordinate state changes

• Usually generated by an oscillating crystal

• Fixed period; frequency = 1/period

1

0

Edge-triggering

• Can design circuits to change on the rising or falling

edge

• Trigger on rising edge = positive edge-triggered

• Trigger on falling edge = negative edge-triggered

• Inputs must be stable just before the triggering edge

input

clock

47

Clock Methodology

Clock Methodology

• Negative edge, synchronous

– Signals must be stable near falling clock edge

• Positive edge synchronous

• Asynchronous, multiple clocks, . . .

clk

compute save

tsetup thold

compute save compute

tcombinational

48

Edge-Triggered D Flip-Flop
D Flip-Flop
• Edge-Triggered

• Data is captured
when clock is high

• Outputs change only
on falling edges

D Q

Q

D Q

Q c

F
L L

clk

D

F

Q

c

Q

Q

D

clk

49

Clock Disciplines

Level sensitive

• State changes when clock is high (or low)

Edge triggered

• State changes at clock edge

positive edge-triggered

negative edge-triggered

50

Registers

Register

• D flip-flops in parallel

• shared clock

• extra clocked inputs:
write_enable, reset, …

clk

D0

D3

D1

D2

4 4
4-bit

reg

51

An Example: What will this circuit do?

32-bit
reg

Clk

+1

Run

WE R

Reset

Decoder

