Numbers \& Arithmetic

Hakim Weatherspoon
CS 3410, Spring 2012
Computer Science
Cornell University

Goals for today

Today

- Review Logic Minimization
- Build a circuit (e.g. voting machine)
- Number representations
- Building blocks (encoders, decoders, multiplexors)

Binary Operations

- One-bit and four-bit adders
- Negative numbers and two's compliment
- Addition (two's compliment)
- Subtraction (two's compliment)
- Performance

Logic Minimization

- How to implement a desired function?

a	b	c	out
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0
$\mathbf{0}$	$\mathbf{0}$	1	1
$\mathbf{0}$	1	0	0
$\mathbf{0}$	1	1	1
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	0
$\mathbf{1}$	0	1	1
$\mathbf{1}$	1	0	0
$\mathbf{1}$	1	1	0

Logic Minimization

- How to implement a desired function?

a	b	C	out	minterm
0	0	0	0	$\overline{\mathrm{a}} \mathrm{b} \overline{\mathrm{c}}$
0	0	1	1	$\overline{\mathrm{a}} \mathrm{b} \mathrm{c}$
0	1	0	0	$\overline{\mathrm{a}} \mathrm{b} \overline{\mathrm{c}}$
0	1	1	1	ab c
1	0	0	0	a b $\overline{\mathrm{c}}$
1	0	1	1	$\overline{\mathrm{b}}$
1	1	0	0	$\mathrm{ab} \overline{\mathrm{c}}$
1	1	1	0	abc

sum of products:

- OR of all minterms where out=1
corollary: any combinational circuit can be implemented in two levels of logic (ignoring inverters)

Karnaugh Maps

How does one find the most efficient equation?

- Manipulate algebraically until...?
- Use Karnaugh maps (optimize visually)
- Use a software optimizer

For large circuits

- Decomposition \& reuse of building blocks

Minimization with Karnaugh maps (1)

a	b	c	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Sum of minterms yields

- $\overline{\mathrm{ab}} \mathrm{c}+\overline{\mathrm{a}} \mathrm{bc}+\mathrm{a} \overline{\mathrm{b}}+\mathrm{a} \overline{\mathrm{b}} \mathrm{c}$

Minimization with Karnaugh maps (2)

a	b	c	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Sum of minterms yields

- $\overline{\mathrm{a}} \mathrm{c}+\mathrm{a} \overline{\mathrm{a}} \mathrm{c}+\mathrm{a} \overline{\mathrm{b}}+\mathrm{a} \overline{\mathrm{b}} \mathrm{c}$

Karnaugh maps identify which inputs are (ir)relevant to the output

Minimization with Karnaugh maps (2)

a	b	c	out
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Sum of minterms yields

- $\overline{\mathrm{a} b} \mathrm{c}+\overline{\mathrm{a}} \mathrm{bc}+\mathrm{a} \overline{\mathrm{c}}+\mathrm{a} \overline{\mathrm{b}} \mathrm{c}$

Karnaugh map minimization

- Cover all 1's
- Group adjacent blocks of 2^{n} 1's that yield a rectangular shape
- Encode the common features of the rectangle
- out $=\mathrm{ab}+\overline{\mathrm{a}} \mathrm{c}$

Karnaugh Minimization Tricks (1)

Karnaugh Minimization Tricks (1)

Minterms can overlap

- out $=b \bar{c}+a \bar{c}+a b$

Minterms can span 2, 4, 8 or more cells

- out $=\bar{c}+a b$

Karnaugh Minimization Tricks (2)

Karnaugh Minimization Tricks (2)

- The map wraps around
- out = bd
- out $=\overline{\mathrm{bd}}$

Karnaugh Minimization Tricks (3)

Karnaugh Minimization Tricks (3)

- "Don't care" values can be interpreted individually in whatever way is convenient
- assume all x's = 1
- out = d
- assume middle x's = 0
- assume $4^{\text {th }}$ column $x=1$
- out = bd

Multiplexer

- A multiplexer selects between multiple inputs
- out = a , if $\mathrm{d}=0$
- out $=b$, if $d=1$
- Build truth table
- Minimize diagram
- Derive logic diagram

Multiplexer Implementation

- Build a truth table
$=a b d+a b \bar{d}+\bar{a} b d+a \bar{b} \bar{d}$

a	b	d	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Multiplexer Implementation

- Build the Karnaugh map

a	b	d	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

			11	
0	0	0	1	1
1	0	1	1	0

Multiplexer Implementation

a	b	d	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- Derive Minimal Logic Equation

$\mathrm{c}^{\text {abb }} 000011110$					
	0	1			0

- out $=a \bar{d}+b d$

Multiplexer Implementation

a	b	d	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- Derive Minimal Logic Equation

- out $=\mathrm{ad}+\mathrm{bd}$

Logic Gates

- One can buy gates separately
- ex. 74xxx series of integrated circuits
- cost ~\$1 per chip, mostly for packaging and testing
- Cumbersome, but possible to build devices using gates put together manually

Integrated Circuits

- Or one can manufacture a complete design using a custom mask
- Intel Westmere has approximately 1.17 billion transistors

Recap

- We can now implement any logic circuit
- Can do it efficiently, using Karnaugh maps to find the minimal terms required
- Can use either NAND or NOR gates to implement the logic circuit
- Can use P- and N-transistors to implement NAND or NOR gates

Voting machine

- Lets build something interesting
- A voting machine
- Assume:
- A vote is recorded on a piece of paper,
- by punching out a hole,
- there are at most 7 choices
- we will nott worry about "hanging chads" or "invalids"

Voting machine

- For now, let's just display the numerical identifier to the ballot supervisor
- we won' t do counting yet, just decoding
- we can use four photo-sensitive transistors to find out which hole is punched out

- A photo-sensitive transistor detects the presence of light
- Photo-sensitive material triggers the gate

Ballot Reading

- Input: paper with a hole in it
- Output: number the ballot supervisor can record

Ballots
The 3410 optical scan
vote ceunter reader
machine

Input

- Photo-sensitive transistor
- photons replenish gate depletion region
- can distinguish dark and light spots on paper
- Use array of N sensors for voting machine input

Output

- 7-Segment LED
- photons emitted when electrons fall into holes

Block Diagram

Encoders

- N might be large
- Routing wires is expensive
- More efficient encoding?

Number Representations

- Base 10 - Decimal

637

- Just as easily use other bases
- Base 2 - Binary
- Base 8 - Octal
$10^{2} 10^{1} 10^{0}$
- Base 16 - Hexadecimal

Counting

- Counting

Base Conversion

- Base conversion via repetitive division
- Divide by base, write remainder, move left with quotient

Base Conversion

- Base conversion via repetitive division
- Divide by base, write remainder, move left with quotient

Base Conversion

- Base conversion via repetitive division
- Divide by base, write remainder, move left with quotient

Encoder Truth Table

Encoder Truth Table

Ballot Reading

Ballot Reading

- Ok, we built

first half of the machine
- Need to display the result

Ballots
The 3410 optical scan vote counter reader machine

7-Segment LED Decoder

- 3 inputs
- encode 0-7in binary
- 7 outputs
- one for each LED

7 Segment LED Decoder Implementation

b2	b1	b0	d6	d5	d4	d3	d2	d1	d0
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

7 Segment LED Decoder Implementation

ba	b1	bo	db	d5	dA 4	dB	d2	di	do
0	0	0	1	1	1	0	1	1	1
0	0	1	1	0	0	0	0	0	1
0	1	0	0	1	1	1	0	1	1
0	1	1	1	1	0	1	0	1	1
1	0	0	1	0	0	1	1	0	1
1	0	1	1	1	0	1	1	1	0
1	1	0	1	1	1	1	1	1	0
1	1	1	1	0	0	0	0	1	1

dI
de do
d3

Ballot Reading and Display

7LED
decode

Ballots
The 3410 optical scan vote counter reader
machine

Building Blocks

Administrivia

Make sure you are

- Registered for class, can access CMS
- Have a Section you can go to
- Have project partner in same Lab Section

Lab1 and HW1 are out

- Both due in one week, next Monday, start early
- Work alone
- But, use your resources
- Lab Section, Piazza.com, Office Hours, Homework Help Session,
- Class notes, book, Sections, CSUGLab

Homework Help Session

- Wednesday and Friday from 3:30-5:30pm
- Location: 203 Thurston

Administrivia

Check online syllabus/schedule

- http://www.cs.cornell.edu/Courses/CS3410/2012sp/schedule.html
- Slides and Reading for lectures
- Office Hours
- Homework and Programming Assignments
- Prelims (in evenings):
- Tuesday, February 28th
- Thursday, March 29th
- April $26^{\text {th }}$

Schedule is subject to change

Binary Addition

- Addition works the same

183

$+254$ way regardless of base

- Add the digits in each position
- Propagate the carry

001110
$+011100$

1-bit Adder

4-bit Adder

4-Bit Full Adder

- Adds two 4-bit numbers and carry in
- Computes 4-bit result and carry out
- Can be cascaded

4-bit Adder

4-bit Adder

- Adds two 4-bit numbers, along with carry-in
- Computes 4-bit result and carry out

Arithmetic with Negative Numbers

- Addition with negatives:
- pos + pos \rightarrow add magnitudes, result positive
- neg + neg \rightarrow add magnitudes, result negative
- pos + neg \rightarrow subtract smaller magnitude, keep sign of bigger magnitude

First Attempt: Sign/Magnitude Representation

- First Attempt: Sign/Magnitude Representation
- 1 bit for sign ($0=$ positive, $1=$ negative)
- N -1 bits for magnitude
- Better: Two's Complement Representation
- Leading 1's for negative numbers
- To negate any number:
- complement all the bits
-then add 1

Two's Complement

- Non-negatives Negatives
- (as usual):

$$
\begin{array}{lll}
+0=0000 & \sim 0=1111 & -0=0000 \\
+1=0001 & \sim 1=1110 & -1=1111 \\
+2=0010 & \sim 2=1101 & -2=1110 \\
+3=0011 & \sim 3=1100 & -3=1101 \\
+4=0100 & \sim 4=1011 & -4=1100 \\
+5=0101 & \sim 5=1010 & -5=1011 \\
+6=0110 & \sim 3=1001 & -6=1010 \\
+7=0111 & \sim 7=1000 & -7=1001 \\
+8=1000 & \sim 8=0111 & -8=1000
\end{array}
$$

Two's Complement Facts

- Signed two's complement
- Negative numbers have leading 1's
- zero is unique: $+0=-0$
- wraps from largest positive to largest negative
- N bits can be used to represent
- unsigned:
- eg: 8 bits \Rightarrow
- signed (two's complement):
- ex: 8 bits \Rightarrow

Sign Extension \& Truncation

- Extending to larger size
- Truncate to smaller size

Two's Complement Addition

- Addition with two's complement signed numbers
- Perform addition as usual, regardless of sign (it just works)

Diversion: 10's Complement

- How does that work?
-154
$+283$

Overflow

- Overflow
- adding a negative and a positive?
- adding two positives?
- adding two negatives?
- Rule of thumb:

Overflow happened iff carry into msb != carry out of msb

Two's Complement Adder

- Two's Complement Adder with overflow detection

Binary Subtraction

- Two's Complement Subtraction

Lazy approach

Q: What if (-B) overflows?

A Calculator

$\mathrm{A} \stackrel{8}{+}$

S
$0=$ add
1=sub

A Calculator

Efficiency and Generality

- Is this design fast enough?
- Can we generalize to 32 bits? 64 ? more?

Performance

- Speed of a circuit is affected by the number of gates in series (on the critical path or the deepest level of logic)

4-bit Ripple Carry Adder

Carry ripples from lsb to msb

- First full adder, 2 gate delay
- Second full adder, 2 gate delay

Summary

- We can now implement any combinational (combinatorial) logic circuit
- Decompose large circuit into manageable blocks
- Encoders, Decoders, Multiplexors, Adders, ...
- Design each block
- Binary encoded numbers for compactness
- Can implement circuits using NAND or NOR gates
- Can implement gates using use P- and N-transistors
- And can add and subtract numbers (in two's compliment)!
- Next time, state and finite state machines...

