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Goals for today 

Today 

• Review Logic Minimization 

• Build a circuit (e.g. voting machine) 

• Number representations 

• Building blocks (encoders, decoders, multiplexors) 

 

Binary Operations 

• One-bit and four-bit adders 

• Negative numbers and two’s compliment 

• Addition (two’s compliment) 

• Subtraction (two’s compliment)  

• Performance 
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Logic Minimization 
• How to implement a desired function? 
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Logic Minimization 
• How to implement a desired function? 
 

 

 

 

 

 

a b c out 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 0 

sum of products: 
• OR of all minterms where out=1 

corollary: any combinational circuit can be implemented in 
two levels of logic (ignoring inverters) 

minterm 

a b c 

a b c 

a b c 

a b c 

a b c 

a b c 

a b c 

a b c 
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Karnaugh Maps 

How does one find the most efficient equation? 

–Manipulate algebraically until…? 

–Use Karnaugh maps (optimize visually) 

–Use a software optimizer 

 

For large circuits 

–Decomposition & reuse of building blocks 

 



a b c out 
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Sum of minterms yields 

 abc + abc + abc + abc 

Minimization with Karnaugh maps (1) 



a b c out 
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Sum of minterms yields 

 abc + abc + abc + abc 

 

Karnaugh maps identify 

which inputs are (ir)relevant 

to the output 
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Minimization with Karnaugh maps (2) 



a b c out 

0 0 0 0 

0 0 1 1 
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Sum of minterms yields 

 abc + abc + abc + abc 

 

Karnaugh map minimization 

 Cover all 1’s 

 Group adjacent blocks of 2n 

1’s that yield a rectangular 

shape 

 Encode the common features 

of the rectangle 

 out = ab + ac 

0 0 0 1 
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1 

c 
ab 

Minimization with Karnaugh maps (2) 



Karnaugh Minimization Tricks (1) 
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Karnaugh Minimization Tricks (1) 

Minterms can overlap 

 out = bc + ac + ab 

 

 

Minterms can span 2, 4, 8 

or more cells 

 out = c + ab 
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Karnaugh Minimization Tricks (2) 
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Karnaugh Minimization Tricks (2) 

• The map wraps around 

– out = bd 

 

 

 

 

– out = bd 
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Karnaugh Minimization Tricks (3) 
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Karnaugh Minimization Tricks (3) 

• “Don’t care” values can be 

interpreted individually in 

whatever way is convenient 

– assume all x’s = 1 

– out = d 

 

 

 

 

– assume middle x’s = 0 

– assume 4th column x = 1 

– out = bd 
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Multiplexer 

• A multiplexer selects 

between multiple inputs 

– out = a, if d = 0 

– out = b, if d = 1 

 

• Build truth table 

• Minimize diagram 

• Derive logic diagram 

a 

b 

d 



Multiplexer Implementation 

a b d out 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 

• Build a truth table 

= abd + abd + a bd + a b d 

 

a 

b 

d 



Multiplexer Implementation 

a b d out 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 

• Build the Karnaugh map 
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Multiplexer Implementation 

a b d out 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 

• Derive Minimal Logic 

Equation 

 

 

 
• out = ad + bd 
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Multiplexer Implementation 

d out 

b 

a 

00  01  11 10 
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• Derive Minimal Logic 

Equation 

 

 

 
• out = ad + bd 

 

0 0 1 1 

0 1 1 0 

a b d out 
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Logic Gates 

• One can buy gates 

separately 

– ex. 74xxx series of 

integrated circuits 

– cost ~$1 per chip, mostly 

for packaging and testing 

 

• Cumbersome, but 

possible to build devices 

using gates put together 

manually 



Integrated Circuits 

• Or one can manufacture a complete 

design using a custom mask 

• Intel Westmere has approximately 1.17 

billion transistors 



Recap 

• We can now implement any logic circuit 

– Can do it efficiently, using Karnaugh maps to 

find the minimal terms required 

– Can use either NAND or NOR gates to 

implement the logic circuit 

– Can use P- and N-transistors to implement 

NAND or NOR gates 



Voting machine 

• Lets build something interesting 

 

• A voting machine 
 

• Assume:  
– A vote is recorded on a piece of paper, 

– by punching out a hole, 

– there are at most 7 choices 

– we will not worry about “hanging chads” or 
“invalids” 
 



Voting machine 

• For now, let’s just display the numerical identifier 
to the ballot supervisor 

– we won’t do counting yet, just decoding 

– we can use four photo-sensitive transistors to 
find out which hole is punched out 

• A photo-sensitive 

transistor detects the 

presence of light 

• Photo-sensitive material 

triggers the gate 



Ballot Reading 

– Input: paper with a 

hole in it 

 

– Output: number the 

ballot supervisor can 

record 

Ballots 
The 3410 optical scan 

vote counter reader 

machine 
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Input 

• Photo-sensitive transistor 
• photons replenish gate 

depletion region  
• can distinguish dark and light 

spots on paper 

 
 
 

• Use array of N sensors for 
voting machine input 

i0 
i1 
i2 
i3 

i5 
i4 

i6 

Vdd 
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Output 

• 7-Segment LED 

• photons emitted when 
electrons fall into holes 

d7 d6 d5 d4 

d3 d2 d1 d0 



28 

Block Diagram 
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Encoders 
• N might be large 
• Routing wires is expensive 

 

• More efficient encoding? 
1 

2 

3 

4 

5 

6 

7 

0 

en
co

d
er

 

N 
. . . 

. . . 
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Number Representations 

• Base 10 - Decimal 
 

 

• Just as easily use other bases 
– Base 2 - Binary 
– Base 8 - Octal 
– Base 16 - Hexadecimal 
 

 
 

6 3 7 
102 101 100 
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Counting 

• Counting 
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Base Conversion 

• Base conversion via repetitive division 
– Divide by base, write remainder, move left with quotient 
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Base Conversion 

• Base conversion via repetitive division 
– Divide by base, write remainder, move left with quotient 
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Base Conversion 

• Base conversion via repetitive division 
– Divide by base, write remainder, move left with quotient 
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Hexadecimal, Binary, Octal Conversions 



Encoder Truth Table 

a 

b 

1 

c 

d 

2 

3 

4 

o1 

A 3-bit 

encoder 
with 4 inputs 

for simplicity 

 

o0 

o1 

o2 



Encoder Truth Table 

a 

b 

1 

c 

d 

2 

3 

4 

o1 

A 3-bit 

encoder 
with 4 inputs 

for simplicity 

 

a b c d o2 o1 o0 

0 0 0 0 0 0 0 

1 0 0 0 0 0 1 

0 1 0 0 0 1 0 

0 0 1 0 0 1 1 

0 0 0 1 1 0 0 

o0 

o1 

o2 

• o2 = abcd 

• o1 = abcd + abcd 

• o0 = abcd + abcd 
 

 



38 

Ballot Reading 
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Ballot Reading 

• Ok, we built 
first half of the 
machine 

 

• Need to display 
the result 

Ballots 
The 3410 optical scan 

vote counter reader machine 
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7-Segment LED Decoder 

• 3 inputs  

• encode 0 – 7 in 
binary 

 

• 7 outputs 

• one for each LED 

 

7
LE

D
 d

ec
o

d
e 



41 

7  Segment  LED  Decoder 

Implementation 

d0 

d1 
d2 

d3 

d4 

d5 

d6 

b2 b1 b0 d6 d5 d4 d3 d2 d1 d0 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 
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7  Segment  LED  Decoder 

Implementation 

d0 

d1 
d2 

d3 

d4 

d5 

d6 

b2 b1 b0 d6 d5 d4 d3 d2 d1 d0 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

1 1 1 0 1 1 1 

1 0 0 0 0 0 1 

0 1 1 1 0 1 1 

1 1 0 1 0 1 1 

1 0 0 1 1 0 1 

1 1 0 1 1 1 0 

1 1 1 1 1 1 0 

1 0 0 0 0 1 1 
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Ballot Reading and Display 

Ballots 
The 3410 optical scan 

 vote counter reader 

machine 

d
et

ec
t 

enc 
8 3 7 

7LED  

decode 
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Building Blocks 

binary 
encoder 

2N 

N binary 
decoder 

N 

2N 
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N 

M 

N 

N 

N 

N 
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 . 
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1 

2 

2M-1 
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Administrivia 

Make sure you are 
• Registered for class, can access CMS 
• Have a Section you can go to 
• Have project partner in same Lab Section 

 
Lab1 and HW1 are out 
• Both due in one week, next Monday, start early 
• Work alone 
• But, use your resources 
• Lab Section, Piazza.com, Office Hours,  Homework Help Session, 
• Class notes, book, Sections, CSUGLab 

 
Homework Help Session  
• Wednesday and Friday from 3:30-5:30pm 
• Location: 203 Thurston  
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Administrivia 

Check online syllabus/schedule  

• http://www.cs.cornell.edu/Courses/CS3410/2012sp/schedule.html 

• Slides and Reading for lectures 

• Office Hours 

• Homework and Programming Assignments 

• Prelims (in evenings):  
• Tuesday, February 28th  

• Thursday, March 29th  

• April 26th  

 

Schedule is subject to change 
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Binary Addition 

• Addition works the same 
way regardless of base 

• Add the digits in each position 

• Propagate the carry 

   183 
+ 254 

     001110 

+ 011100    
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1-bit  Adder 

Half Adder 

• Adds two 1-bit numbers 

• Computes 1-bit result 
and 1-bit carry  

A B 

R 

C 
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1-bit Adder with Carry 

Full Adder 

• Adds three 1-bit numbers 

• Computes 1-bit result 
and 1-bit carry 

• Can be cascaded 

A B 

R 

Cout Cin 
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4-bit Adder 

4-Bit Full Adder 

• Adds two 4-bit numbers 
and carry in 

• Computes 4-bit result 
and carry out 

• Can be cascaded 

A[4] B[4] 

R[4] 

Cout Cin 



51 

4-bit Adder 

A0   B0 

R0 

A1   B1 

R1 

A2   B2 

R2 

A3   B3 

R3 

Cout Cin 



52 

4-bit Adder 

• Adds two 4-bit numbers, along with carry-in 

• Computes 4-bit result and carry out 

A0   B0 

R0 

A1   B1 

R1 

A2   B2 

R2 

A3   B3 

R3 

Cout Cin 
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Arithmetic with Negative Numbers 

• Addition with negatives: 

• pos + pos  add magnitudes, result positive 

• neg + neg  add magnitudes, result negative 

• pos + neg  subtract smaller magnitude,  
   keep sign of bigger magnitude 
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First Attempt: Sign/Magnitude  

Representation 

• First Attempt: Sign/Magnitude Representation 

• 1 bit for sign (0=positive, 1=negative) 

• N-1 bits for magnitude 
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Two’s Complement Representation 

• Better: Two’s Complement Representation 

• Leading 1’s for negative numbers 

• To negate any number: 

– complement all the bits 

– then add 1 
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Two’s Complement 

• Non-negatives 
• (as usual): 

•  +0 = 0000 
•  +1 = 0001 
•  +2 = 0010 
•  +3 = 0011 
•  +4 = 0100 
•  +5 = 0101 
•  +6 = 0110 
•  +7 = 0111 
•  +8 = 1000 

Negatives 
(two’s complement: flip then add 1): 

 ~0 = 1111   -0 = 0000 

 ~1 = 1110   -1 = 1111 
 ~2 = 1101   -2 = 1110 
 ~3 = 1100   -3 = 1101 
 ~4 = 1011   -4 = 1100 

 ~5 = 1010   -5 = 1011 
 ~3 = 1001   -6 = 1010 
 ~7 = 1000   -7 = 1001 
 ~8 = 0111  -8 = 1000 
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Two’s Complement Facts 

• Signed two’s complement 
• Negative numbers have leading 1’s 

• zero is unique: +0 = - 0 

• wraps from largest positive to largest negative 

• N bits can be used to represent  
• unsigned: 

– eg: 8 bits  

• signed (two’s complement): 
– ex: 8 bits  
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Sign Extension & Truncation 

• Extending to larger size 

 

 

 

• Truncate to smaller size 
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Two’s Complement Addition 

• Addition with two’s complement signed numbers 

• Perform addition as usual, regardless of sign 
(it just works) 

A0   B0 

R0 

A1   B1 

R1 

A2   B2 

R2 

A3   B3 

R3 

Cout 
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Diversion: 10’s Complement 

• How does that work? 

-154 

+283 
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Overflow 

• Overflow 
• adding a negative and a positive? 

 

• adding two positives? 

 

• adding two negatives? 

 

• Rule of thumb: 

•  Overflow happened iff 
 carry into msb != carry out of msb 
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Two’s Complement Adder 

• Two’s Complement Adder with overflow 
detection 

 A0     B0 

R0 

A1     B1 

R1 

A2     B2 

R2 

A3     B3 

R3 

over 

flow 

0 
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Binary Subtraction 

• Two’s Complement Subtraction 

•  Lazy approach 

•  A – B = A + (-B) = A + (B + 1) 

R0 R1 R2 R3 

over 

flow 

1 

A0 

B0 

A1 

B1 

A2 

B2 

A3 

B3 

Q:  What if (-B) overflows? 
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A Calculator 
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A Calculator 
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• Is this design fast enough? 

• Can we generalize to 32 bits? 64? more? 

Efficiency and Generality 

A0     B0 

R0 

A1     B1 

R1 

A2     B2 

R2 

A3     B3 

R3 

C0 
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Performance 

• Speed of a circuit is affected by the number of 
gates in series (on the critical path or the 
deepest level of logic) 
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4-bit Ripple Carry Adder 

A3 B3 

R3 

C4 

A1 B1 

R1 

A2 B2 

R2 

A0 B0 

C0 

R0 

C1 C2 C3 

• First full adder, 2 gate delay 
• Second full adder, 2 gate delay 
• … 

Carry ripples from lsb to msb 



69 

Summary 

• We can now implement any combinational 
(combinatorial) logic circuit 

• Decompose large circuit into manageable blocks 

– Encoders, Decoders, Multiplexors, Adders, ... 

• Design each block 

– Binary encoded numbers for compactness 

• Can implement circuits using NAND or NOR gates 

• Can implement gates using use P- and N-transistors 

• And can add and subtract numbers (in two’s compliment)! 

• Next time, state and finite state machines… 


