
Numbers & Arithmetic

Hakim Weatherspoon
CS 3410, Spring 2012

Computer Science
Cornell University

See: P&H Chapter 2.4 - 2.6, 3.2, C.5 – C.6

2

Goals for today

Today

• Review Logic Minimization

• Build a circuit (e.g. voting machine)

• Number representations

• Building blocks (encoders, decoders, multiplexors)

Binary Operations

• One-bit and four-bit adders

• Negative numbers and two’s compliment

• Addition (two’s compliment)

• Subtraction (two’s compliment)

• Performance

3

Logic Minimization
• How to implement a desired function?

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

4

Logic Minimization
• How to implement a desired function?

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

sum of products:
• OR of all minterms where out=1

corollary: any combinational circuit can be implemented in
two levels of logic (ignoring inverters)

minterm

a b c

a b c

a b c

a b c

a b c

a b c

a b c

a b c

5

Karnaugh Maps

How does one find the most efficient equation?

–Manipulate algebraically until…?

–Use Karnaugh maps (optimize visually)

–Use a software optimizer

For large circuits

–Decomposition & reuse of building blocks

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Sum of minterms yields

 abc + abc + abc + abc

Minimization with Karnaugh maps (1)

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Sum of minterms yields

 abc + abc + abc + abc

Karnaugh maps identify

which inputs are (ir)relevant

to the output

0 0 0 1

1 1 0 1

00 01 11 10

0

1

c
ab

Minimization with Karnaugh maps (2)

a b c out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Sum of minterms yields

 abc + abc + abc + abc

Karnaugh map minimization

 Cover all 1’s

 Group adjacent blocks of 2n

1’s that yield a rectangular

shape

 Encode the common features

of the rectangle

 out = ab + ac

0 0 0 1

1 1 0 1

00 01 11 10

0

1

c
ab

Minimization with Karnaugh maps (2)

Karnaugh Minimization Tricks (1)

0 1 1 1

0 0 1 0

00 01 11 10

0

1

c
ab

1 1 1 1

0 0 1 0

00 01 11 10

0

1

c
ab

Karnaugh Minimization Tricks (1)

Minterms can overlap

 out = bc + ac + ab

Minterms can span 2, 4, 8

or more cells

 out = c + ab

0 1 1 1

0 0 1 0

00 01 11 10

0

1

c
ab

1 1 1 1

0 0 1 0

00 01 11 10

0

1

c
ab

Karnaugh Minimization Tricks (2)

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

00 01 11 10

00

01

ab

cd

11

10

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

00 01 11 10

00

01

ab

cd

11

10

Karnaugh Minimization Tricks (2)

• The map wraps around

– out = bd

– out = bd
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

00 01 11 10

00

01

ab

cd

11

10

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

00 01 11 10

00

01

ab

cd

11

10

Karnaugh Minimization Tricks (3)

1 0 0 x

0 x x 0

0 x x 0

1 0 0 1

00 01 11 10

00

01

ab

cd

11

10

0 0 0 0

1 x x x

1 x x 1

0 0 0 0

00 01 11 10

00

01

ab

cd

11

10

Karnaugh Minimization Tricks (3)

• “Don’t care” values can be

interpreted individually in

whatever way is convenient

– assume all x’s = 1

– out = d

– assume middle x’s = 0

– assume 4th column x = 1

– out = bd

1 0 0 x

0 x x 0

0 x x 0

1 0 0 1

00 01 11 10

00

01

ab

cd

11

10

0 0 0 0

1 x x x

1 x x 1

0 0 0 0

00 01 11 10

00

01

ab

cd

11

10

Multiplexer

• A multiplexer selects

between multiple inputs

– out = a, if d = 0

– out = b, if d = 1

• Build truth table

• Minimize diagram

• Derive logic diagram

a

b

d

Multiplexer Implementation

a b d out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

• Build a truth table

= abd + abd + a bd + a b d

a

b

d

Multiplexer Implementation

a b d out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

• Build the Karnaugh map

a

b

d

0 0 1 1

0 1 1 0

00 01 11 10

0

1

d
ab

Multiplexer Implementation

a b d out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

• Derive Minimal Logic

Equation

• out = ad + bd

a

b

d

0 0 1 1

0 1 1 0

00 01 11 10

0

1

d
ab

Multiplexer Implementation

d out

b

a

00 01 11 10

0

1

d
ab

• Derive Minimal Logic

Equation

• out = ad + bd

0 0 1 1

0 1 1 0

a b d out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

a

b

d

Logic Gates

• One can buy gates

separately

– ex. 74xxx series of

integrated circuits

– cost ~$1 per chip, mostly

for packaging and testing

• Cumbersome, but

possible to build devices

using gates put together

manually

Integrated Circuits

• Or one can manufacture a complete

design using a custom mask

• Intel Westmere has approximately 1.17

billion transistors

Recap

• We can now implement any logic circuit

– Can do it efficiently, using Karnaugh maps to

find the minimal terms required

– Can use either NAND or NOR gates to

implement the logic circuit

– Can use P- and N-transistors to implement

NAND or NOR gates

Voting machine

• Lets build something interesting

• A voting machine

• Assume:
– A vote is recorded on a piece of paper,

– by punching out a hole,

– there are at most 7 choices

– we will not worry about “hanging chads” or
“invalids”

Voting machine

• For now, let’s just display the numerical identifier
to the ballot supervisor

– we won’t do counting yet, just decoding

– we can use four photo-sensitive transistors to
find out which hole is punched out

• A photo-sensitive

transistor detects the

presence of light

• Photo-sensitive material

triggers the gate

Ballot Reading

– Input: paper with a

hole in it

– Output: number the

ballot supervisor can

record

Ballots
The 3410 optical scan

vote counter reader

machine

26

Input

• Photo-sensitive transistor
• photons replenish gate

depletion region
• can distinguish dark and light

spots on paper

• Use array of N sensors for
voting machine input

i0
i1
i2
i3

i5
i4

i6

Vdd

27

Output

• 7-Segment LED

• photons emitted when
electrons fall into holes

d7 d6 d5 d4

d3 d2 d1 d0

28

Block Diagram

d
et

ec
t

8 N

29

Encoders
• N might be large
• Routing wires is expensive

• More efficient encoding?
1

2

3

4

5

6

7

0

en
co

d
er

N
. . .

. . .

30

Number Representations

• Base 10 - Decimal

• Just as easily use other bases
– Base 2 - Binary
– Base 8 - Octal
– Base 16 - Hexadecimal

6 3 7
102 101 100

31

Counting

• Counting

32

Base Conversion

• Base conversion via repetitive division
– Divide by base, write remainder, move left with quotient

33

Base Conversion

• Base conversion via repetitive division
– Divide by base, write remainder, move left with quotient

34

Base Conversion

• Base conversion via repetitive division
– Divide by base, write remainder, move left with quotient

35

Hexadecimal, Binary, Octal Conversions

Encoder Truth Table

a

b

1

c

d

2

3

4

o1

A 3-bit

encoder
with 4 inputs

for simplicity

o0

o1

o2

Encoder Truth Table

a

b

1

c

d

2

3

4

o1

A 3-bit

encoder
with 4 inputs

for simplicity

a b c d o2 o1 o0

0 0 0 0 0 0 0

1 0 0 0 0 0 1

0 1 0 0 0 1 0

0 0 1 0 0 1 1

0 0 0 1 1 0 0

o0

o1

o2

• o2 = abcd

• o1 = abcd + abcd

• o0 = abcd + abcd

38

Ballot Reading

d
et

ec
t

enc
8 3 8

39

Ballot Reading

• Ok, we built
first half of the
machine

• Need to display
the result

Ballots
The 3410 optical scan

vote counter reader machine

40

7-Segment LED Decoder

• 3 inputs

• encode 0 – 7 in
binary

• 7 outputs

• one for each LED

7
LE

D
 d

ec
o

d
e

41

7 Segment LED Decoder

Implementation

d0

d1
d2

d3

d4

d5

d6

b2 b1 b0 d6 d5 d4 d3 d2 d1 d0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

42

7 Segment LED Decoder

Implementation

d0

d1
d2

d3

d4

d5

d6

b2 b1 b0 d6 d5 d4 d3 d2 d1 d0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 1 1 0 1 1 1

1 0 0 0 0 0 1

0 1 1 1 0 1 1

1 1 0 1 0 1 1

1 0 0 1 1 0 1

1 1 0 1 1 1 0

1 1 1 1 1 1 0

1 0 0 0 0 1 1

43

Ballot Reading and Display

Ballots
The 3410 optical scan

 vote counter reader

machine

d
et

ec
t

enc
8 3 7

7LED

decode

44

Building Blocks

binary
encoder

2N

N binary
decoder

N

2N

M

u
lt

ip
le

xo
r

N

M

N

N

N

N

. .
 .

0

1

2

2M-1

45

Administrivia

Make sure you are
• Registered for class, can access CMS
• Have a Section you can go to
• Have project partner in same Lab Section

Lab1 and HW1 are out
• Both due in one week, next Monday, start early
• Work alone
• But, use your resources
• Lab Section, Piazza.com, Office Hours, Homework Help Session,
• Class notes, book, Sections, CSUGLab

Homework Help Session
• Wednesday and Friday from 3:30-5:30pm
• Location: 203 Thurston

46

Administrivia

Check online syllabus/schedule

• http://www.cs.cornell.edu/Courses/CS3410/2012sp/schedule.html

• Slides and Reading for lectures

• Office Hours

• Homework and Programming Assignments

• Prelims (in evenings):
• Tuesday, February 28th

• Thursday, March 29th

• April 26th

Schedule is subject to change

47

Binary Addition

• Addition works the same
way regardless of base

• Add the digits in each position

• Propagate the carry

 183
+ 254

 001110

+ 011100

48

1-bit Adder

Half Adder

• Adds two 1-bit numbers

• Computes 1-bit result
and 1-bit carry

A B

R

C

49

1-bit Adder with Carry

Full Adder

• Adds three 1-bit numbers

• Computes 1-bit result
and 1-bit carry

• Can be cascaded

A B

R

Cout Cin

50

4-bit Adder

4-Bit Full Adder

• Adds two 4-bit numbers
and carry in

• Computes 4-bit result
and carry out

• Can be cascaded

A[4] B[4]

R[4]

Cout Cin

51

4-bit Adder

A0 B0

R0

A1 B1

R1

A2 B2

R2

A3 B3

R3

Cout Cin

52

4-bit Adder

• Adds two 4-bit numbers, along with carry-in

• Computes 4-bit result and carry out

A0 B0

R0

A1 B1

R1

A2 B2

R2

A3 B3

R3

Cout Cin

53

Arithmetic with Negative Numbers

• Addition with negatives:

• pos + pos  add magnitudes, result positive

• neg + neg  add magnitudes, result negative

• pos + neg  subtract smaller magnitude,
 keep sign of bigger magnitude

54

First Attempt: Sign/Magnitude

Representation

• First Attempt: Sign/Magnitude Representation

• 1 bit for sign (0=positive, 1=negative)

• N-1 bits for magnitude

55

Two’s Complement Representation

• Better: Two’s Complement Representation

• Leading 1’s for negative numbers

• To negate any number:

– complement all the bits

– then add 1

56

Two’s Complement

• Non-negatives
• (as usual):

• +0 = 0000
• +1 = 0001
• +2 = 0010
• +3 = 0011
• +4 = 0100
• +5 = 0101
• +6 = 0110
• +7 = 0111
• +8 = 1000

Negatives
(two’s complement: flip then add 1):

 ~0 = 1111 -0 = 0000

 ~1 = 1110 -1 = 1111
 ~2 = 1101 -2 = 1110
 ~3 = 1100 -3 = 1101
 ~4 = 1011 -4 = 1100

 ~5 = 1010 -5 = 1011
 ~3 = 1001 -6 = 1010
 ~7 = 1000 -7 = 1001
 ~8 = 0111 -8 = 1000

57

Two’s Complement Facts

• Signed two’s complement
• Negative numbers have leading 1’s

• zero is unique: +0 = - 0

• wraps from largest positive to largest negative

• N bits can be used to represent
• unsigned:

– eg: 8 bits 

• signed (two’s complement):
– ex: 8 bits 

58

Sign Extension & Truncation

• Extending to larger size

• Truncate to smaller size

59

Two’s Complement Addition

• Addition with two’s complement signed numbers

• Perform addition as usual, regardless of sign
(it just works)

A0 B0

R0

A1 B1

R1

A2 B2

R2

A3 B3

R3

Cout

60

Diversion: 10’s Complement

• How does that work?

-154

+283

61

Overflow

• Overflow
• adding a negative and a positive?

• adding two positives?

• adding two negatives?

• Rule of thumb:

• Overflow happened iff
 carry into msb != carry out of msb

62

Two’s Complement Adder

• Two’s Complement Adder with overflow
detection

 A0 B0

R0

A1 B1

R1

A2 B2

R2

A3 B3

R3

over

flow

0

63

Binary Subtraction

• Two’s Complement Subtraction

• Lazy approach

• A – B = A + (-B) = A + (B + 1)

R0 R1 R2 R3

over

flow

1

A0

B0

A1

B1

A2

B2

A3

B3

Q: What if (-B) overflows?

64

A Calculator

d
ec

o
d

er

8

8

S
0=add
1=sub

A

B
8

65

A Calculator

0

1
ad

d
er

m

u
x

m
u

x d
ec

o
d

er

8

8
8

8

8

S

A

B
8

66

• Is this design fast enough?

• Can we generalize to 32 bits? 64? more?

Efficiency and Generality

A0 B0

R0

A1 B1

R1

A2 B2

R2

A3 B3

R3

C0

67

Performance

• Speed of a circuit is affected by the number of
gates in series (on the critical path or the
deepest level of logic)

Combination
al

Logic

tcombinational

in
p

u
ts

ar
ri

v
e

o
u

tp
u

ts

ex
p

ec
te

d

68

4-bit Ripple Carry Adder

A3 B3

R3

C4

A1 B1

R1

A2 B2

R2

A0 B0

C0

R0

C1 C2 C3

• First full adder, 2 gate delay
• Second full adder, 2 gate delay
• …

Carry ripples from lsb to msb

69

Summary

• We can now implement any combinational
(combinatorial) logic circuit

• Decompose large circuit into manageable blocks

– Encoders, Decoders, Multiplexors, Adders, ...

• Design each block

– Binary encoded numbers for compactness

• Can implement circuits using NAND or NOR gates

• Can implement gates using use P- and N-transistors

• And can add and subtract numbers (in two’s compliment)!

• Next time, state and finite state machines…

