CS 3410: Computer System Organization and Programming

Hakim Weatherspoon Spring 2012 Computer Science Cornell University

Computer System Organization

• The most amazing and likely to be most long-lived invention of the 1800's was...

Computer Organization

- The most amazing and likely to be most long-lived invention of the 1800's was...
 - (a) The steam engine?
 - (b) The lightning rod?
 - (c) The carbonated beverage?
 - (d) All of the above
 - (e) None

Computer Organization

• The most amazing and likely to be most long-lived invention of the 1800's was...

THE ELECTRIC SWITCH

Basic Building Blocks: A switch

- A switch is a simple device that can act as a conductor or isolator
- Can be used for amazing things...

In what language do computers think?

- (a) Java
- (b) C/C++
- (c) Matlab
- (c) Python
- (d) Binary Digits

Basic Building Blocks: Switches

Basic Building Blocks: NPN Transistors

P and N Transistors

PNP Transistor

NPN Transistor

Connect E to C when
 base = 0
 Connect E to C when
 base = 1

Inverter

in

• Function: NOT

Symbol:

Called an inverter

In Out 0 1 1 0 Truth table

 Useful for taking the inverse of an input

out

 CMOS: complementary-symmetry metal-oxidesemiconductor

NAND Gate

- Function: NAND
- Symbol:

NOR Gate

- Function: NOR
- Symbol:

Building Functions

- NAND and NOR are universal
 - Can implement any function with NAND or just NOR gates
 - useful for manufacturing

Then and Now

http://www.theregister.co.uk/2010/02/03/intel_westmere_ep_preview/

- The first transistor
 - on a workbench at
 - AT&T Bell Labs in 1947
 - Bardeen, Brattain, and Shockley
 © Hakim Weather

- An Intel Westmere
 - 1.17 billion transistors
 - 240 square millimeters
 - Six processing cores

Moore's Law

The number of transistors integrated on a single die will double every 24 months... – Gordon Moore, Intel co-founder, 1965

Amazingly Visionary

1971 – 2300 transistors – 1MHz – 4004

1990 – 1M transistors – 50MHz – i486

2001 – 42M transistors – 2GHz – Xeon

2004 – 55M transistors - 3GHz – P4

2007 – 290M transistors – 3GHz – Core 2 Duo

2009 – 731 // transistors - 2GH7 – Nehalem

Course Objective

- Bridge the gap between hardware and software
 - How a processor works
 - How a computer is organized
- Establish a foundation for building higherlevel applications
 - How to understand program performance
 - How to understand where the world is going

Announcements: How class organized

- Instructor: Hakim Weatherspoon (hweather@cs.cornell.edu)
- Lecture:
 - Tu/Th 1:25-2:40
 - Hollister B14
- Lab Sections:
 - Carpenter 235 (Red Room)

Who am I?

- Prof. Hakim Weatherspoon
 - (Hakim means Doctor, wise, or prof. in Arabic)
 - Background in Education
 - Undergraduate University of Washington
 - Played Varsity Football
 - Some teammates collectively make \$100's of millions
 - -I teach!!!
 - Graduate University of California, Berkeley
 - Some class mates collectively make \$100's of millions
 - I teach!!!
 - Background in Operating Systems
 - Peer-to-Peer Storage
 - Antiquity project Secure wide-area distributed system
 - OceanStore project Store your data for 1000 years
 - Network overlays
 - Bamboo and Tapestry Find your data around globe
 - Tiny OS
 - Early adopter in 1999, but ultimately chose P2P direction © Hakim Weatherspoon, Computer Science, Cornell University

Who am I?

- Cloud computing/storage
 - Optimizing a global network of data centers
 - Cornell Ntional λ-Rail Rings testbed
 - Software Defined Network Adapter
 - Energy: KyotoFS/SMFS
- Antiquity: built a global-scale storage system

Course Staff

- cs3410-staff-l@cs.cornell.edu
- Lecture/Homwork TA's
 - Colin Ponce Anish Ghulati
 - Ming Pan

(cponce@cs.cornell.edu) (ag795@cornell.edu) (mp492@cornell.edu)

(pht24@cornell.edu)

- Lab TAs \bullet
 - Han Wang Zhefu Jiang

(hwang@cs.cornell.edu) (zj46@cs.cornell.edu)

(lead)

(lead)

(lead)

- Lab Undergraduate consultants •
 - (db478@cornell.edu) Doo San Baik
 - (el378@cornell.edu) – Erluo Li (jlz27@cornell.edu)
 - Jason Zhao

 - Peter Tseng (pht24@cornell.edu)
 Roman Averbukh (raa89@cornell.edu)
 - (sdf47@cornell.edu) Scott Franklin

Administrative Assistant:

Randy Hess (rbhess@cs.cornell.edu)

Course Staff

Doo San Baik

Roman Averbukh Peter Tseng

Book

- Computer Organization and Design
 - The Hardware/Software
 Interface

- David Patterson, John Hennessy
 - Get the 4th Edition
 Revised

REVISED PRINTING

Pre-requisites and scheduling

- CS 2110 is required
 - Must have satisfactorily completed CS 2110
 - Cannot take CS 2110 concurrently with CS 3410
- CS 3420 (ECE 3140)
 - Take either CS 3410 or CS 3420
 - both satisfy CS and ECE requirements
 - However, Need ENGRD 2300 to take CS 3420
- CS 3110

Not advised to take CS 3110 and 3410 together

Grading

(45 - 50%)Lab (15-20%)– 4-5 Individual Labs (30 - 35%)-4 Group Projects Lecture (45-50%)- 3 Prelims (35-40%)(10%)- Homework Participation/Discretionary (5%) Prelims TU Feb 28 Th Mar29 Apr © Hakim Weatherspoon, Computer Science, Cornell University

Grading

- Regrade policy
 - Submit written request to lead TA, and lead TA will pick a different grader
 - Submit another written request, lead TA will regrade directly
 - Submit *yet* another written request for professor to regrade.
- Late Policy
 - Each person has a total of *four* "slip days"
 - Max of *two* slip days for any individual assignment
 - For projects, slip days are deducted from all partners
 - 20% deducted per day late after slip days are exhausted

Administrivia

- http://www.cs.cornell.edu/courses/cs3410/2012sp
 - Office Hours / Consulting Hours
 - Lecture slides & schedule
 - Logisim
 - CSUG lab access (esp. second half of course)
- Lab Sections (start today)
 - Labs are separate than lecture and homework
 - Bring laptop to Labs (optional)

Administrivia

- http://www.cs.cornell.edu/courses/cs3410/2012sp
 - Office Hours / Consulting Hours
 - Lecture slides & schedule
 - Logisim

Ξ

- CSUG lab access (esp. second half of course)
- Lab Sections (start today)
 - T 2:55 4:10pm
 - W 3:35 4:50pm
 - W 7:30—8:45pm
 - R 11:40 12:55pm
 - R 2:55 4:10pm
 - 2:55 4:10pm

Carpenter Hall 235 (Red Room) Carpenter Hall 235 (Red Room)

- Labs are separate than lecture and homework
- Bring laptop to Labs
- This week: intro to logisim and building an adder © Hakim Weatherspoon, Computer Science, Cornell University

Communication

Email

- cs3410-staff-l@cs.cornell.edu
- The email alias goes to me and the TAs, not to whole class

Assignments

CMS: http://cms.csuglab.cornell.edu

Newsgroup

- http://www.piazza.com/cornell/spring2012/cs3410
- For students

iClicker

– http://atcsupport.cit.cornell.edu/pollsrvc/

Lab Sections & Projects

- Lab Sections start this week
 - Intro to logisim and building an adder
- Labs Assignments
 - Individual
 - One week to finish (usually Monday to Monday)
- Projects
 - two-person teams
 - Find partner in same section

Academic Integrity

- All submitted work must be your own
 - OK to study together, but do not share soln's
 - Cite your sources
- Project groups submit joint work
 - Same rules apply to projects at the group level
 - Cannot use of someone else's soln
- Closed-book exams, no calculators
- Stressed? Tempted? Lost?
 - Come see me before due date!

Plagiarism in any form will not be tolerated

Why do CS Students Need Transistors?

Why do CS Students Need Transistors?

Functionality and Performance

Why do CS Students Need Transistors?

- To be better Computer Scientists and Engineers
 - Abstraction: simplifying complexity
 - How is a computer system organized? How do I build it?
 - How do I program it? How do I change it?
 - How does its design/organization effect performance?

Computer System Organization

Computer System Organization Computer System = ? Input + Keyboard Mouse Output + Memory + Datapath + Video Network **USB** Control Registers bus bus Serial CPU Disk Audio Memory

Compilers & Assemblers

Instruction Set Architecture

ISA

 abstract interface between hardware and the lowest level software

user portion of the instruction set plus the operating system interfaces used by application programmers

Basic Computer System

- A processor executes instructions
 - Processor has some internal state in storage elements (registers)
- A memory holds instructions and data
 - von Neumann architecture: combined inst and data
- A bus connects the two

How to Design a Simple Processor

Inside the Processor

AMD Barcelona: 4 processor cores

Figure from Patterson & Hennesssy, Computer Organization and Design, 4th Edition

How to Program the Processor: MIPS R3000 ISA

- Instruction Categories
 - Load/Store
 - Computational
 - Jump and Branch
 - Floating Point
 - coprocessor
 - Memory Management

Registers
R0 - R31
PC
H
LO

Applications

- Everything these days!
 - Phones, cars, televisions, games, computers,...

Example 3: New Devices

Xilinx FPGA

Berkeley mote

Covered in this course

Reflect

Why take this course?

- Basic knowledge needed for all other areas of CS: operating systems, compilers, ...
- Levels are not independent
 - hardware design \leftrightarrow software design \leftrightarrow performance
- Crossing boundaries is hard but important
 device drivers
- . Good design techniques

abstraction, layering, pipelining, parallel vs. serial, ...

. Understand where the world is going