
CS 3410 Homework 4
Note: No slip days are allowed for this homework. This homework must be turned in by the deadline.

1. (a) List all the steps, in order, that a caller must go through when calling a subroutine.

(b) List all the steps, in order, that a callee must go through when finishing a subroutine and returning
to a caller.

(c) In what situation(s) could $fp point below $sp?

(d) What is dynamic linking? Describe one advantage and one disadvantage.

2. Consider the following MIPS subroutine:

BINS:

ADDI $sp, $sp, -48

SW $ra, 44($sp)

SW $fp, 40($sp)

SW $s0, 36($sp)

SW $s1, 32($sp)

ADD $s0, $a0, $a1

SRA $s0, $s0, 1

LW $s1, 0($s0)

SW $a0,28($sp)

SW $a1, 24($sp)

SW $a2, 20($sp)

SW $a3, 16($sp)

ADDI $a0, $s1, 0

ADDI $a1, $a2, 0

JALR $a3

LW $a0, 28($sp)

LW $a1, 24($sp)

LW $a2, 20($sp)

LW $a3, 16($sp)

ADDI $t0, $zero, 1

BNE $v0, $t0, ELSIF

NOP

ADDI $a1, $s0, $zero

JAL BINS

NOP

ADDI $s1, $v0, 0

ELSIF:

ADDI $t0, $zero, -1

BNE $v0, $t0, RET

NOP

ADDI $a0, $s0, $zero

JAL BINS

NOP

ADDI $s1, $v0, 0

RET:

ADDI $v0, $s1, 0

LW $ra, 44($sp)

LW $fp, 40($sp)

1

LW $s0, 36($sp)

LW $s1, 32($sp)

ADDI $sp, $sp, 48

JR $ra

(a) For each 4-byte entry in the acitvation record, label what that entry’s purpose is in the table below.

$sp+ 44

$sp+ 40

$sp+ 36

$sp+ 32

$sp+ 28

$sp+ 24

$sp+ 20

$sp+ 16

$sp+ 12

$sp+ 8

$sp+ 4

$sp

(b) Fill in the missing bits of pseudocode (anything with a ? should be replaced).

bins(a0, a1, a2, a3){

s0 = ?

s1 = Mem[?]

v0 = ?

if (?)

s1 = ?

elseif (?)

s1 = ?

return ?

}

(c) Fill in the blanks in the following sentences to describe what this function does.

This function performs a _______________ in the sorted array whose endpoints are _____ and
______ to find the element associated with _______. Because the array elements are generic,
possibly even pointers to other objects, we need argument ___________ to act as a __________

to tell us “which direction to go” next and when to finish.

(d) This code is poorly written in that it could potentially recurse infinitely, resulting in a stack
overflow. In what situation will this happen?

3. This problem will deal with caching.

(a) If, say, SRAM is so much faster, why don’t we just build all memory out of SRAM?

(b) The practice of transferring contiguous blocks of memory into cache at once exploits what well-
known behavior of memory accesses?

2

(c) Suppose we are using a direct mapped cache with two 32-byte cache lines, and consider the following
pseudocode:

lw $1 <- M[4]

lw $2 <- M[72]

lw $3 <- M[40]

lw $1 <- M[68]

lw $2 <- M[80]

lw $3 <- M[0]

lw $1 <- M[44]

lw $2 <- M[72]

i. Which bits of a memory address are the cache tag? Which are the index? The offset of a word
within the cache line? The offset of a byte within the word?

ii. How many cache hits and cache misses are there during the execution of this code, assuming
a cold start with no prefetching?

iii. What which memory addresses are stored in each location in the cache at the end of the
execution of this code?

4. In this problem you will implement Euclid’s algorithm again. This is the same algorithm that you
implemented in the last homework.

a) Implement in C or pseudocode a function gcd(int num1, int num2) that takes two arguments and
returns their greatest common divisor. If you implemented this algorithm on the last homework
in an iterative fashion, you must implement this algorithm in a recursive manner here. If you
implemented this algorithm on the last homework in a recursive manner, you must implement this
algorithm in an iterative manner here.

b) Translate your above function into MIPS code. You must account for delay slots in any branches or
jumps that you take, but you do not need to optimize the code in any way (so NOPs are fine). Note
that you must use proper calling conventions as described in lecture, along with proper epilogues
and prologues.

Note 1: We are not looking for a piece of code that happens to produce the same result as the
code above; we are looking for a translation of the code above. So each line of code above should
be associated with one or more lines of MIPS code, and these should follow the same order on the
page as the code above.

3

