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• We’re now going to use what we’ve seen to build a powerful encryption scheme.  Recall the 
result we used to calculate high powers, namely  aφ(n) = 1 mod n  if  a  and  n  are coprime.  
We can exploit this to find roots in the following way.

• For example, we’ll solve  x131 = 758  mod 1073 .   

Working in the group  ℤ1073  we want to change the equation  x131 = 758  

        into something having  xφ(1073) + 1,  ie  x ,  by raising both sides to the 

        power  u  where  u = (131)–1 mod φ(1073)

Firstly we compute  φ(1073) = φ(29 × 37) = 28 × 36 = 1008.  

        Notice that this is coprime to 131,  so gcd(1008 , 131)  = 1.

Now we use the Euclidean algorithm to find  u  and  v  satisfying  

        131u – 1008v  =  1,   getting  u = 731  and  v = 95 .

So  x131 = 758 mod 1073  ⟹  (x131)731 = 758731 mod 1073  

        ⟹  x1 + 1008(95) mod 1073  =  x mod 1073 = 758731 mod 1073.

Unfortunately we can’t use our friend ‘little Fermat‘ to calculate this 

        power of 758 quickly,  but we can keep squaring to observe :  

731 = 29 + 27 + 26 + 24 + 23 + 2 + 1  

        ⟹  x  =  758731 mod 1073  =  (1011)(712)(663)(625)(1011)(509)(758) mod 1073  =  905 mod 1073.

• Consider the following. 

The recipient picks two very large prime numbers  p  and  q ,   and multiplies to get  m = pq ,   then  φ(m) = (p – 1)(q – 1) . 

Now choose any  k  coprime to  φ(m) ,  then the recipient publishes the values of  k  and  m  in order to receive messages.

If the plaintext message is a string of numbers  a1, a2, . . . , at ,   the sender computes  b1, b2, . . . , bt  where each  b = ak mod m .

Send the ciphertext message  b1, b2, . . . , bt .

The receiver only has to solve  xk = b mod m  for each  b  to decrypt the message, which is easy since they know  φ(m) .
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A table of 2k-th powers of 758 mod 1073 :

7581 = 758 mod 1073

7582 = 7582 mod 1073 = 509 mod 1073

7584 = 5092 mod 1073 = 488 mod 1073

7588 = 4882 mod 1073 = 1011 mod 1073

75816 = 10112 mod 1073 = 625 mod 1073

75832 = 6252 mod 1073 = 53 mod 1073

75864 = 532 mod 1073 = 663 mod 1073

758128 = 6632 mod 1073 = 712 mod 1073

758256 = 7122 mod 1073 = 488 mod 1073

758512 = 4882 mod 1073 = 1011 mod 1073

Notice that the values are now cycling!!
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• Two examples* to illustrate this RSA encryption scheme: 
Convert letters to numbers via  A = 11,  B = 12, . . . ,  Z = 36.  Pick primes  p = 12553  and  q = 13007  so  m = 163276871.

Then  φ(m) = (p – 1)(q – 1) = 163251312 ,   and choose  k = 79921 ,   which is coprime to  m .

      The plaintext message “tobeornottobe” becomes  302512152528244253030251215  after conversion.

            Since  m  has 9 digits, we break the message into 8-digit strings:  3021215    25282425    30302512    15 .

            Raising each of these to the power  k = 79921  working  mod 163276871  gives:   

                    149419241    62721998    23054767    40481382    as the encrypted text to send.

      This time, you’ve received an encrypted message:

            145387828    47164891    152020614    27279275    35356191

            Calculating via the Euclidean algorithm gives:  79921–1 mod 163251312  =  145604785  =  u

            Raising each of the terms in the encrypted text to the power  u  working  mod 163276871  gives: 

            30182523    26292524    19291924    30282531    122215    as the decrypted ‘text’, which translates to:

                    “thompsonisintrouble”  as the received plaintext.

• As you can see, there is some computational overhead involved!  Hence this system tends not 
to be used to communicate long messages, rather it’s used to communicate short information 
on how to decode other long messages which have been encrypted (e.g., using variations of 
one-time pads) via vastly less computationally intensive methods.

• The reason that this is both viable and potentially hard to crack is that it’s relatively easy to 
encrypt and decrypt if you know the value of  φ(m),  but finding that value if you don’t know 
the factorisation** of  m  is decidedly tricky.  Hence if  m  was constructed from two extremely 
large primes, then it is presumed that*** it’s very hard to factorise  m.  

37

*  These are taken from a really nice, yet elementary book: Silverman, J.H. (1997). 
A Friendly Introduction to Number Theory, Prentice-Hall, NJ.

***  This is a fairly careful statement.  A great deal of work has been expended on 
trying to understand the complexities of integer factorisation.  As of the date of 
these notes (March 2014), it is not widely known if any reasonably efficient 
approaches to factorisation exist.  No theorems are widely known indicating 
decisively the degree of computational complexity of factorisation.  It could be that 
reasonably good algorithms do exist and are not widely known, but we live in a 
world of bluff, double bluff, etc..

**  A rich and fascinating array of techniques have been applied to understanding 
factorisation, ranging from ‘regular’ algebraic number theory to geometric ideas in 
fairly exotic contexts, often peppered with delicate probabilistic methods.
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• This is an example of public key cryptography, the principle of which is as follows.

• Let P be the set of potential plaintext messages, Z the set of encrypted texts, and C the set of keys.

• There are functions  ε : P × C ⟶	  Z  and   δ : Z × C ⟶	  P ,  being the encryption and decryption maps respectively, 
satisfying  δ( ε( p , c ) , c ) = p ,   i.e., decrypting the encrypted message should give you the original message!!

• Evaluating ε should be easy and evaluating δ should be hard.

• There’s an additional layer; namely a set  S  of secret keys, together with a pair of functions                                               
σ : S ⟶ C  and  σ–1 : C ⟶ S  making public (or hiding) the keys.

• Evaluating  σ  and  δ* should be easy,  where  δ*(z , s) = δ(z , σ(s)) = δ(z , c),  but evaluating  σ –1  should be hard.

• Suppose Alice wants to send a message p to Bob in an environment where Eve is eavesdropping. 

• Bob chooses a secret key  b ∈ S, keeping that information private.  He then easily computes  c = σ(b) ∈ C  and tells that 
to Alice, knowing that Eve will see it. 

• Alice uses  c  to compute  z = ε(p , c)  easily, and sends that to Bob.

• Bob knows the secret key  b  so easily computes  δ*(z , b) = δ(s , c) = p .

• Eve doesn’t know the secret key  b ,  so has either to compute  δ(z , c)  or  σ –1(c) ,  both of which are hard.

• There’s a further problem: since Eve knows Bob’s public key, she can impersonate Alice and send 
her own encrypted message to Bob, claiming that it’s coming from Alice.

• We assume explicitly that  P = Z ,  and symmetrically that  ε( δ( z , c ) , c ) = z  for all  z ∈ Z  and  c ∈ C .

• Bizarrely,  Alice treats  p  as if it were encrypted, and decrypts it using her own secret key  a  to get  w = δ(p , a) .

• She then writes  q =  “this is a signed message from Alice”,  then creates  v = (q appended by w)  and sends  z = ε(v , c)  
to Bob using his public key.

• Bob decrypts this using his secret key to get  v = δ(z , b) , sees that it’s from Alice, even though much of it is encrypted, 
and encrypts it using Alice’s public key c′ to get  w = ε( v , c′ ) .
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Such functions are called 
one-way functions

Trapdoor one-way functions are such that 
adding a piece of information makes 
computation of the inverse easy.


