
CS 2800 - Number Theory

• We’re now going to use what we’ve seen to build a powerful encryption scheme. Recall the
result we used to calculate high powers, namely aφ(n) = 1 mod n if a and n are coprime.
We can exploit this to find roots in the following way.

• For example, we’ll solve x131 = 758 mod 1073 .

Working in the group ℤ1073 we want to change the equation x131 = 758

 into something having xφ(1073) + 1, ie x , by raising both sides to the

 power u where u = (131)–1 mod φ(1073)

Firstly we compute φ(1073) = φ(29 × 37) = 28 × 36 = 1008.

 Notice that this is coprime to 131, so gcd(1008 , 131) = 1.

Now we use the Euclidean algorithm to find u and v satisfying

 131u – 1008v = 1, getting u = 731 and v = 95 .

So x131 = 758 mod 1073 ⟹ (x131)731 = 758731 mod 1073

 ⟹ x1 + 1008(95) mod 1073 = x mod 1073 = 758731 mod 1073.

Unfortunately we can’t use our friend ‘little Fermat‘ to calculate this

 power of 758 quickly, but we can keep squaring to observe :

731 = 29 + 27 + 26 + 24 + 23 + 2 + 1

 ⟹ x = 758731 mod 1073 = (1011)(712)(663)(625)(1011)(509)(758) mod 1073 = 905 mod 1073.

• Consider the following.

The recipient picks two very large prime numbers p and q , and multiplies to get m = pq , then φ(m) = (p – 1)(q – 1) .

Now choose any k coprime to φ(m) , then the recipient publishes the values of k and m in order to receive messages.

If the plaintext message is a string of numbers a1, a2, . . . , at , the sender computes b1, b2, . . . , bt where each b = ak mod m .

Send the ciphertext message b1, b2, . . . , bt .

The receiver only has to solve xk = b mod m for each b to decrypt the message, which is easy since they know φ(m) .

36

A table of 2k-th powers of 758 mod 1073 :

7581 = 758 mod 1073

7582 = 7582 mod 1073 = 509 mod 1073

7584 = 5092 mod 1073 = 488 mod 1073

7588 = 4882 mod 1073 = 1011 mod 1073

75816 = 10112 mod 1073 = 625 mod 1073

75832 = 6252 mod 1073 = 53 mod 1073

75864 = 532 mod 1073 = 663 mod 1073

758128 = 6632 mod 1073 = 712 mod 1073

758256 = 7122 mod 1073 = 488 mod 1073

758512 = 4882 mod 1073 = 1011 mod 1073

Notice that the values are now cycling!!

CS 2800 - Number Theory

• Two examples* to illustrate this RSA encryption scheme:
Convert letters to numbers via A = 11, B = 12, . . . , Z = 36. Pick primes p = 12553 and q = 13007 so m = 163276871.

Then φ(m) = (p – 1)(q – 1) = 163251312 , and choose k = 79921 , which is coprime to m .

 The plaintext message “tobeornottobe” becomes 302512152528244253030251215 after conversion.

 Since m has 9 digits, we break the message into 8-digit strings: 3021215 25282425 30302512 15 .

 Raising each of these to the power k = 79921 working mod 163276871 gives:

 149419241 62721998 23054767 40481382 as the encrypted text to send.

 This time, you’ve received an encrypted message:

 145387828 47164891 152020614 27279275 35356191

 Calculating via the Euclidean algorithm gives: 79921–1 mod 163251312 = 145604785 = u

 Raising each of the terms in the encrypted text to the power u working mod 163276871 gives:

 30182523 26292524 19291924 30282531 122215 as the decrypted ‘text’, which translates to:

 “thompsonisintrouble” as the received plaintext.

• As you can see, there is some computational overhead involved! Hence this system tends not
to be used to communicate long messages, rather it’s used to communicate short information
on how to decode other long messages which have been encrypted (e.g., using variations of
one-time pads) via vastly less computationally intensive methods.

• The reason that this is both viable and potentially hard to crack is that it’s relatively easy to
encrypt and decrypt if you know the value of φ(m), but finding that value if you don’t know
the factorisation** of m is decidedly tricky. Hence if m was constructed from two extremely
large primes, then it is presumed that*** it’s very hard to factorise m.

37

* These are taken from a really nice, yet elementary book: Silverman, J.H. (1997).
A Friendly Introduction to Number Theory, Prentice-Hall, NJ.

*** This is a fairly careful statement. A great deal of work has been expended on
trying to understand the complexities of integer factorisation. As of the date of
these notes (March 2014), it is not widely known if any reasonably efficient
approaches to factorisation exist. No theorems are widely known indicating
decisively the degree of computational complexity of factorisation. It could be that
reasonably good algorithms do exist and are not widely known, but we live in a
world of bluff, double bluff, etc..

** A rich and fascinating array of techniques have been applied to understanding
factorisation, ranging from ‘regular’ algebraic number theory to geometric ideas in
fairly exotic contexts, often peppered with delicate probabilistic methods.

CS 2800 - Number Theory

• This is an example of public key cryptography, the principle of which is as follows.

• Let P be the set of potential plaintext messages, Z the set of encrypted texts, and C the set of keys.

• There are functions ε : P × C ⟶	 Z and δ : Z × C ⟶	 P , being the encryption and decryption maps respectively,
satisfying δ(ε(p , c) , c) = p , i.e., decrypting the encrypted message should give you the original message!!

• Evaluating ε should be easy and evaluating δ should be hard.

• There’s an additional layer; namely a set S of secret keys, together with a pair of functions
σ : S ⟶ C and σ–1 : C ⟶ S making public (or hiding) the keys.

• Evaluating σ and δ* should be easy, where δ*(z , s) = δ(z , σ(s)) = δ(z , c), but evaluating σ –1 should be hard.

• Suppose Alice wants to send a message p to Bob in an environment where Eve is eavesdropping.

• Bob chooses a secret key b ∈ S, keeping that information private. He then easily computes c = σ(b) ∈ C and tells that
to Alice, knowing that Eve will see it.

• Alice uses c to compute z = ε(p , c) easily, and sends that to Bob.

• Bob knows the secret key b so easily computes δ*(z , b) = δ(s , c) = p .

• Eve doesn’t know the secret key b , so has either to compute δ(z , c) or σ –1(c) , both of which are hard.

• There’s a further problem: since Eve knows Bob’s public key, she can impersonate Alice and send
her own encrypted message to Bob, claiming that it’s coming from Alice.

• We assume explicitly that P = Z , and symmetrically that ε(δ(z , c) , c) = z for all z ∈ Z and c ∈ C .

• Bizarrely, Alice treats p as if it were encrypted, and decrypts it using her own secret key a to get w = δ(p , a) .

• She then writes q = “this is a signed message from Alice”, then creates v = (q appended by w) and sends z = ε(v , c)
to Bob using his public key.

• Bob decrypts this using his secret key to get v = δ(z , b) , sees that it’s from Alice, even though much of it is encrypted,
and encrypts it using Alice’s public key c′ to get w = ε(v , c′) .

38

Such functions are called
one-way functions

Trapdoor one-way functions are such that
adding a piece of information makes
computation of the inverse easy.

